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Abstract

This is the second part of a three-volume guide to tlusty and syn-
spec. It presents a detailed reference manual for tlusty, which contains
a detailed description of basic physical assumptions and equations used to
model an atmosphere, together with an overview of the numerical methods
to solve these equations.
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1 Introduction

This paper in the second part of a series of three papers that provide a de-
tailed guide to model stellar atmosphere and accretion disk program tlusty,
and associated spectrum synthesis program synspec. The first paper (Hubeny
& Lanz 2017a; hereafter referred to as Paper I) provides a brief introductory
guide to these programs, without much description of the underlying physical,
mathematical, and numerical background.

The aim of this paper is to provide just that. We shall summarize the
basic structural equations of the problem, and outline the adopted numerical
methods to solve the resulting equations. An outline of the actual operation of
tlusty, and a detailed explanation and description of the input parameters,
the individual computational strategies, and various tricks to solve potential
numerical problems, is covered in the subsequent Paper III (Hubeny & Lanz
2017c).

A detailed description of the original version of tlusty is given by Hubeny
(1988). That paper describes the basic concepts, equations, and numerical
methods used. However, because the program has evolved considerably since
1988, the description presented in that paper has become in many places obso-
lete. The major new developments are described in several papers: Hubeny &
Lanz (1992) presented the Ng and Kantorovich accelerations; Hubeny & Lanz
(1995) developed the hybrid CL/ALI method, and the concept of superlevels
and superlines treated by means of an Opacity Distribution Functions (ODF) or
Opacity Sampling (OS). A treatment of level dissolution, occupation probabili-
ties, merged levels, and corresponding pseudocontinuum is described by Hubeny,
Hummer, & Lanz (1994). An extension to high-temperature conditions, includ-
ing Compton scattering, X-ray opacities with inner-shell (Auger) ionization, is
described in Hubeny et al. (2001). A general and comprehensive overview of the
physical and mathematical formulation of the problem is presented in Hubeny
& Mihalas (2014; Chaps.12, 13, 14, 17, 18).

2 Physical background

tlusty is designed to compute the so-called classical model atmospheres; that
is, plane-parallel, horizontally homogeneous atmospheres in hydrostatic and ra-
diative (or radiative+convective) equilibrium. For a comprehensive discussion
and detailed description of the basic physics and numerics of the problem, refer
to Hubeny & Mihalas (2014; Chap. 18).

In the next section, we describe the basic assumptions and structural equa-
tions specific to stellar atmospheres. The equations are generally non-local and
therefore depend on the geometry of the problem. Analogous assumptions and
equations for accretion disks will be described in the subsequent section, while
the local physics and corresponding equations, valid for both atmospheres and
disks, will be covered in the rest of the chapter.
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2.1 Basic equations of stellar atmospheres

•Radiative transfer equation
It is convenient to use the second-order form

d2(fνJν)

dτ2
ν

= Jν − Sν , (1)

where fν is the variable Eddington factor, Jν the mean intensity of radiation at
frequency ν, τν the monochromatic optical depth and Sν the source function,
defined by

Sν = ηtot
ν /χν , (2)

where χν is the total absorption coefficient, and ηtot
ν the total emission coeffi-

cient. The Eddington factor is defined by

fν ≡ Kν/Jν =

∫ 1

−1

Iν(µ)µ2 dµ

/∫ 1

−1

Iν(µ) dµ, (3)

where µ = cos θ, with θ being the angle between the direction of propagation of
the radiation and the normal to the surface. The optical depth is defined by

dτν ≡ −χνdz = (χν/ρ) dm, (4)

where z is a geometrical distance measured along the normal to the surface from
the bottom of the atmosphere to the top, m the column mass, and ρ the mass
density – see equation (12). The column mass is taken as the basic geometrical
coordinate.

The upper boundary condition is written as[
∂(fνJν)

∂τν

]
0

= gνJν(0)−Hext
ν , (5)

where gν is the surface Eddington factor defined by

gν ≡
1

2

∫ 1

−1

Iν(µ, 0)µdµ
/
Jν(0), (6)

and

Hext
ν ≡ 1

2

∫ 1

0

Iext
ν (µ)µdµ (7)

where Iext
ν (µ) is an external incoming intensity at the top of the atmosphere.

In most cases one assumes no incoming radiation, Iext
ν (µ) = 0, but can be taken

as a non-zero input quantity if needed.
The lower boundary condition is written in a similar way[

∂(fνJν)

∂τν

]
τmax

= H+
ν −

1

2
Jν , (8)

4



where H+
ν = 1

2

∫
I+
ν (µ, τmax)µdµ. One typically assumes the diffusion approxi-

mation at the lower boundary, in which case I+
ν (µ) = Bν + µ(dBν/dτν), hence

equation (8) is written as[
∂(fνJν)

∂τν

]
τmax

=

[
1

2
(Bν − Jν) +

1

3

∂Bν
∂τν

]
τmax

, (9)

where Bν is the Planck function,

Bν =
2hν3

c2
1

exp(hν/kT )− 1
, (10)

where T is the temperature, and h, k, c are the Planck constant, Boltzmann
constant, and the speed of light, respectively.

Equations (1), (5), and (9) contain only the mean intensity of radiation, Jν ,
a function of frequency and depth, but not the specific intensity, Iµν , which
is also a function of the polar angle θ (µ = cos θ). This is made possible by
introducing the Eddington factor, which is computed in the formal solution of
the transfer equation, and is held fixed during the subsequent iteration of the
linearization process. By the term “formal solution” we mean a solution of the
transfer equation with known source function. It is done between two consec-
utive iterations of the iterative scheme, with the current values of the state
parameters – see § 3.8.

•Hydrostatic equilibrium equation
The equation is conveniently written as

dP

dm
= g, (11)

where P is the total (gas plus radiation) pressure, and m the Lagrangian mass,
or column mass,

dm = −ρ dz, (12)

g is the surface gravity, which is assumed constant throughout the atmosphere,
and given by g = GM∗/R

2
∗, where M∗ and R∗ are the stellar mass and radius,

respectively; G is the gravitational constant. The surface gravity g is one of the
basic parameters of the problem.

The total pressure is generally composed of three parts, the gas pressure,
Pgas, the radiation pressure, Prad, and a “turbulent pressure”, Pturb. The gas
pressure is given, assuming an ideal gas equation of state, by

Pgas = NkT, (13)

where T is the (electron) temperature, and N is the total particle number den-
sity. The radiation pressure is given by

Prad =
4π

c

∫ ∞
0

Kνdν. (14)
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The so-called “turbulent pressure” is not a well-defined quantity; it is introduced
to mimic a pressure associated with a random motion of “turbulent eddies” as
Pturb ∝ ρv2

turb, where vturb is the microturbulent velocity. It can be included
in tlusty model calculations, but it is not recommended since its physical
meaning is questionable.

The hydrostatic equilibrium equation can then be written as

d(Pgas + Pturb)

dm
= g − 4π

c

∫ ∞
0

dKν

dm
dν = g − 4π

c

∫ ∞
0

χν
ρ
Hν dν, (15)

where Hν and Kν are the first and second angular moments of the specific in-
tensity.

•Energy balance equation
In the convectively stable layers, the energy balance is represented by the

radiative equilibrium equation. For the purposes of numerical stability, it is
considered in tlusty as a linear combination of its two possible forms – the
terms in square brackets of equation (16), that both should be identically equal
to zero,

α

[ ∫ ∞
0

(
χνJν − ηtot

ν

)
dν

]
+ β

[ ∫ ∞
0

d(fνJν)

dτν
dν − σR

4π
T 4

eff

]
= 0, (16)

where α and β are empirical coefficients that satisfy α→ 1 in the upper layers,
and α → 0 for deep layers, while the opposite applies for β. The division
between the “surface” and “deep” layers is a free parameter. In equation (16),
σR is the Stefan-Boltzmann constant and Teff the effective temperature, which
is a measure of the total energy flux coming from the interior. It is another
basic parameter of the problem.

The first term of equation (16) is called the ”integral form”, while the sec-
ond the ”differential” form. Using Eqs. (86) and (89), and assuming coherent
scattering in the scattering part of the emission coefficient, the integral form
may be rewritten in a traditional form∫ ∞

0

(
χνJν − ηtot

ν

)
dν =

∫ ∞
0

(κνJν − ην) dν, (17)

where κν and ην are the extinction and thermal emission coefficients, respec-
tively.

•Convection
The atmosphere is convectively unstable if the Schwarzschild criterion for

convective instability is satisfied,

∇rad > ∇ad, (18)

where ∇rad = (d lnT/d lnP )rad is the logarithmic temperature gradient in ra-
diative equilibrium, and ∇ad is the adiabatic gradient. The latter is viewed as
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a function of temperature and pressure, ∇ad = ∇ad(T, P ). The density ρ is
considered to be a function of T and P through the equation of state.

If convection is present, equation (16) is modified to read

α

[ ∫ ∞
0

(κνJν − ην) dν+
ρ

4π

dFconv

dm

]
+β

[ ∫ ∞
0

d(fνJν)

dτν
dν− σR

4π
T 4

eff +
Fconv

4π

]
= 0

(19)
where Fconv is the convective flux, given by

Fconv = (gQHP /32)1/2(ρcPT )(∇−∇el)
3/2(`/HP )2, (20)

where HP ≡ −(d lnP/dz)−1 = P/(ρg) is the pressure scale height, cP is the
specific heat at constant pressure, Q ≡ −(d ln ρ/d lnT )P , and `/HP is the ratio
of the convective mixing length to the pressure scale height, taken as a free
parameter of the problem, ∇ is the actual logarithmic temperature gradient,
and ∇el is the gradient of the convective elements. The latter is determined
by considering the efficiency of the convective transport; see, e.g., Hubeny and
Mihalas (2014; § 16.5),

∇−∇el = (∇−∇ad) +B2/2−B
√
B2/2− (∇−∇ad), (21)

where

B =
12
√

2σRT
3

ρcp(gQHP )1/2(`/HP )

τel

1 + τ2
el/2

, (22)

with τel = χR` is the optical thickness of the characteristic element size `. The
gradient of the convective elements is then a function of temperature, pressure,
the actual gradient, ∇el = ∇el(T, P,∇), and the convective flux can also be
regarded as a function of T , P , and ∇.

For white dwarfs, Fontaine et al. (1992) suggested a slightly different pre-
scription for the convective flux, called ML2, which essentially consists of replac-
ing the factor

√
1/32 in Eq. (20) by 2. This possibility is also offered by tlusty.

•Other structural equations
The rest of structural equations, namely the kinetic equilibrium equation,

charge and particle conservation equation, equation of state, together with aux-
iliary equations such as the definition of absorption and emission coefficients,
are local, and therefore the same for stellar atmospheres and accretion disks,
and will be described in §§ 2.3 - 2.4.

2.2 Accretion disks

The basic assumptions are the following:

• The disk is divided into a set of concentric rings, each behaving as an in-
dependent 1-D plane parallel radiating slab; no assumptions about optical
thickness are made. One run of tlusty calculates a vertical structure of
one ring;
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• hydrostatic equilibrium in the vertical z-direction;

• energy balance is considered as a balance between the net radiation loss
(calculated exactly, without invoking neither optically thin, nor optically
thick [diffusion] approximations), and the mechanical energy generated
through viscous dissipation;

• the dissipated energy is proportional to viscosity, which is given through
the empirical viscosity parameter α or through a Reynolds number;

One can consider accretion disks around stars – the so-call classical disks,
in which case the basic radial structure is given by the standard model (e.g.,
Frank, King, Raine 1992), or disks around black holes – the so-called relativistic
disks, in which case the radial structure is given essentially by Novikov & Thorne
(1973), with refinements described in Riffert & Herold (1995) and Krolik (1999).
We use a universal formalism, in which case the relativistic disks are described
by means of relativistic corrections. We follow the notation of Riffert & Herold
(1995) and Hubeny & Hubeny (1998).

2.2.1 General structural equations

The basic structural equations for one individual ring are the following:

•Vertical hydrostatic equilibrium equation
The atmosphere at each disk radius R (specified in the disk midplane) is in

hydrostatic equilibrium, with a depth-dependent gravity (g) that arises from the
vertical component of the central star’s gravitational force on the disk material.
Neglecting the self-gravity of the disk and assuming that R is much larger than
the distance from the central plane, z:

dP

dz
= −g(z)ρ, or

dP

dm
= g(z) , (23)

where the depth-dependent vertical gravity acceleration is given by

g(z) =
GM

R3

C

B
z . (24)

G is the gravitational constant, M is the mass of the central object, and B and
C (together with A used later) are the so-called relativistic corrections in the
notation of Riffert and Harold (1995). For classical disks, A = B = C = 1.

•Energy balance
Generally, it is written as

∂Fz
∂z

=
3

2

(
GM

R3

)1/2
A

B
tφr, (25)
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where Fz is the z-component of the energy flux and Tφr is the sheer stress, also
called the viscous stress.

•Azimuthal momentum balance
Under the assumption of tφr = 0 at the innermost orbit, it is written as∫ h

−h
tφrdz =

Ṁ

2π

(
GM

R3

)1/2
D

A
, (26)

where h is the vertical height of the given annulus, and Ṁ is the mass accretion
rate.

•Equation describing the source of viscous stress

tφr =
3

2
η

(
GM

R3

)1/2
A

B
, (27)

where η is the coefficient of sheer viscosity, which is expressed through the
coefficient of kinematic viscosity w as η ≡ ρw.

•The coefficients A - D are given by:
For classical disks,

A = B = C = 1, (28)

D = 1− (R/R∗)
1/2

, (29)

where R∗ is the radius of the central star.
For relativistic disks, they are called the relativistic corrections:

A = 1− 2

r
+
a2

r2
, (30)

B = 1− 3

r
+

2a

r3/2
, (31)

C = 1− 4a

r3/2
+

3a2

r2
, (32)

D =
1√
r

∫ r

ri

x2 − 6x+ 8a
√
x− 3a2

√
x(x2 − 3x+ 2a

√
x)

dx, (33)

where r is the radius of the annulus is expressed in units of the gravitational
radius, r = R/(GM/c2), and a is the specific angular momentum (spin) of the
black hole expressed in units of G/c (a = 0 for a Schwarzschild black hole;
a = 0.998 for maximum rotating Kerr black hole).

2.2.2 Viscosity and the total column mass

To write down practical expressions of the energy balance and for the total
column mass, one has to introduce a suitable parametrization of viscosity. First,
the sheer viscosity η is expressed through the kinematic viscosity w as

η ≡ ρw. (34)
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The corresponding vertically averaged kinematic viscosity is given by

w̄ =

∫ h
0
wρdz∫ h

0
ρdz

=
1

m0

∫ h

0

ηdz =
1

m0

∫ m0

0

w dm. (35)

Integrating Eq. (27) from 0 to h, and using Eq. (26) together with Eq. (35),
one can express the total column mass at the midplane through the averaged
viscosity as

m0 =
1

w̄

Ṁ

6π

BD

A2
, (36)

There are two possibilities to express the viscosity. A simple one is to
parametrize it through the Reynolds number (Lynden-Bell & Pringle 1974, Kř́ıž
& Hubeny 1986), in which case the vertically averaged viscosity is simply given
as

w̄ =
(GMR)1/2

Re
, (37)

where Re is the Reynolds number, which is a free parameter of the problem,
typically chosen between 1000 and 10000 (Lynden-Bell & Pringle 1974). Con-
sequently, the total column mass m0 is simply

m0 =
ṀRe

6π(GMR)1/2

BD

A2
, (38)

which has a big computational advantage that m0 is given as a function of M ,
Ṁ , and R (and the spin a in the case of relativistic disks), and therefore is
known a priori. However, it is not clear how to choose a proper value of the
Reynolds number and, moreover, whether the same Reynolds number applies
for all radial distances in a disk.

Therefore, a much more commonly used prescription is based on the so-
called α-parametrization (Shakura & Sunyaev 1973). There are several variants
of this parametrization; we use here a version in which the vertically averaged
sheer viscosity is taken proportional to the vertically averaged (total) pressure,

¯tφr ≡
1

h

∫ h

0

tφrdz = αP̄ , (39)

in which case ∫ h

0

tφrdz = hαP̄ = m0α(P̄ /ρ̄), (40)

where the averaged density is given by ρ̄ = m0/h. The vertically averaged
kinematic viscosity is given by substituting Eqs. (27) integrated over z into Eq.
(40),

w̄ = α
2

3

(
R3

GM

)1/2
B

A

(
P̄

ρ̄

)
. (41)

10



A disadvantage of the α-prescription is that the vertically averaged kinematic
viscosity, and the total column mass are not known a priori since they depend on
(P̄ /ρ̄), which can only be accurately computed when the model is constructed.

In the case of dominant radiation pressure, one can, however, derive a rela-
tion between P̄ and ρ̄ prior to solving for the detailed structure (e.g., Hubeny &
Hubeny 1998). In this case, the vertically-averaged kinematic viscosity is given
through α as

w̄ = 2Ṁ2α

(
GM

R3

)1/2(
σe

8πmHc

)2
D2

AC
, (42)

and, with the α-parametrization of viscosity, the total column mass is given by

m0 =
16π

3

(
mHc

σe

)2(
R3

GM

)1/2
1

Ṁα

BC

AD
, (43)

In the case where the radiation pressure is not dominant, the (approximate)
relation between the total column mass m0 and the viscosity parameter α is
given by

αm0

(
a+ βm

1/4
0

)
− γ = 0. (44)

where
a = (σRT

4
effχe/c)

2/(3Q), (45)

β = 0.8Rg κ
1/8
0 (2Q/πRg)

1/16T
1/2
eff , (46)

and
γ = (Ṁ/4π)(GM/R3)1/2(D/A), (47)

where Rg = 1.3 × 108 is the gas constant, χe = σe/mH = 0.39, and κ0 =
6.4 × 1024 is the coefficient in the Kramers-type expression for the Rosseland
mean opacity,

κR ≈ κ0ρT
−7/2. (48)

Equation (44) follows from Eqs. (26) and (40), where one makes an approxima-
tion that

(P̄ /ρ̄) ≈ (P̄ /ρ̄)rad + (P̄ /ρ̄)gas, (49)

where (P̄ /ρ̄)rad and (P̄ /ρ̄)gas correspond to the radiation-pressure dominated
and gas-pressure dominated situation, respectively.

The non-linear equation (44) form0 is solved by the Newton-Raphson method.

In the case of negligible gas pressure we have βm
1/4
0 � a, so Eq. (44) becomes

a simple linear equation for m0. It can be easily verified that its solution is
identical to that given by Eq. (43).

•Parametrization of the local viscosity
The (depth-dependent) viscosity w is allowed to vary as a step-wise power

law of the mass column density, viz.

w(m) = w0 (m/m0)
ζ0 , m > md , (50)
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w(m) = w1 (m/m0)
ζ1 , m < md , (51)

where md is the division point. In other words, we allow for a different power-
law exponent for inner and outer layers, and also for a different portion of the
total energy dissipated in these layers. This represents a generalization of an
approach we used previously, based on a single power-law representation. For
details, refer to Paper III, § 12.8.

We stress that this parametrization is an empirical one. The most natural
way of treating local viscosity would be to keep the coefficient of kinematic
viscosity constant with depth, i.e., ζ0 = ζ1 = 0. We have originally introduced
a power-law parametrization to avoid numerical problems at the surface (Kř́ıž
& Hubeny 1986), where ζ1 > 0. One can also simulate a dissipation that occurs
preferentially at the surface layers, with viscosity increasing with decreasing
depth which leads to the formation of a disk corona. In this case one choses
ζ1 < 0. Parameter ζ0 is typically taken as 0.

2.2.3 Actual form of structural equations to be solved

As in the case of stellar atmospheres, the basic geometrical coordinate is the
column mass, m. The above structural equations, supplemented by the radia-
tive transfer equation, are written as follows:

•Radiative transfer equation
This equation, and its upper boundary condition, is exactly the same as

for stellar atmospheres, equations (1) and (8); the only difference is the lower
boundary condition that represents a symmetry condition at the midplane,

Hν = 0, or
d(fνJν)

dτν
= 0. (52)

•Vertical hydrostatic equilibrium equation
Equations (23), using Eq. (24) is rewritten as

dP

dm
= Qz, (53)

where

Q ≡ GM

R3

C

B
. (54)

•Energy balance
Integrating Eq. (25) over z, and using Eq. (26), one obtains for the total

energy flux at the surface which is expressed, in analogy to stellar atmospheres,
through the effective temperature,

Fz(h) ≡ σRT 4
eff =

3

8π

GMṀ

R3

D

B
, (55)
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The integral form of the energy balance equation follows directly from Eqs. (25),
(27), and (34):

4π

∫ ∞
0

(ην − κνJν)dν =
9

4

GM

R3

(
A

B

)2

ρw, (56)

where the left-hand side, analogous to the case of stellar atmospheres, expresses
the net energy radiated away from the unit volume, while the right-hand side
expresses the total energy generated by viscous dissipation in the same unit
volume. The differential form, in analogy with the atmospheric case, is written
as:

4π

∫ ∞
0

d(fνJν)

dτν
dν = σRT

4
eff [1− θ(m)], (57)

where the function θ is defined by

θ(m) ≡ 1

m̄0

∫ m

0

w(m′) dm′, (58)

which is a monotonically increasing function of m with θ(0) = 0 and θ(m0) = 1,
for any dependence of the local viscosity on depth.

As in the case of stellar atmospheres, one uses here a linear combination
of Eqs. (56) and (57). If convection is present, the convective flux is added
analogously as in Eq. (19) for stellar atmospheres. The complete energy balance
equation then reads:

α

[ ∫ ∞
0

(κνJν − ην) dν + Ediss +
ρ

4π

dFconv

dm

]
+

β

[ ∫ ∞
0

d(fνJν)

dτν
dν − σR

4π
T 4

eff [1− θ(m)] +
Fconv

4π

]
= 0, (59)

where

Ediss =
9

16π

GM

R3

(
A

B

)2

ρw (60)

is the total energy generated by viscous dissipation per unit volume.

• z-m relation
Unlike the case of stellar atmospheres, where the vertical coordinate z has

no special meaning, for disks it has to be calculated for given column mass and
current density because the gravitational acceleration depends on it through
equations (23) and (24). The z-m relation, given by Eq. (12) has to be consid-
ered as one of the structural equations.

•Other structural equations
The rest of structural equations, namely the kinetic equilibrium equations for

explicit levels, equation of state, and charge conservation equation, together with
auxiliary equations such as the definition of absorption and emission coefficients,
are local, and therefore the same as in the case of stellar atmospheres.
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Table 1: Comparison of stellar atmospheres and accretion disks

Stellar atmospheres Accretion disks

radiative equilibrium: no radiative equilibrium:∫
(ην − κνJν)dν = 0

∫
(ην − κνJν)dν = Ediss

g constant g = Qz
(dependent on vertical distance)

τtot →∞ τtot finite; not a priori known
Lower boundary: diffusion approx. Lower boundary: symmetry

Basic parameters: Teff , g, [A] Basic parameters: Teff , Q, m0, [A]

Here, Ediss is the dissipated energy given by Eq. (60), Q is the gravity acceler-
ation parameter given by Eq. (54), τtot denotes any optical depth (monochro-
matic or mean) at the midplane, and [A] denotes a collection of chemical abun-
dances of all species that are taken into account (see below). The entry “Lower
boundary” means the form of the lower boundary condition for the radiative
transfer equation. Notice that in the case of disks, the parameters Teff , Q, m0

are not the fundamental ones, but are evaluated from the more fundamental
parameters that specify the disk and the ring within it, namely M , Ṁ , R, α (or
Re), and, in the case of black-hole disks, the spin a.

2.3 Kinetic equilibrium and NLTE

•Kinetic equilibrium equations
Since one does not assume Local Thermodynamic Equilibrium (LTE), the

atomic level populations have to be determined by solving the corresponding
kinetic equilibrium equation. To this end, one selects the set of chemical species,
each with a number of ionization stages, and for each stage a number of energy
levels, for which the kinetic equilibrium equation is solved. These are called
explicit atoms, explicit ions, and explicit levels, respectively. Their choice is
completely driven by input data, described in Paper III, Chaps. 3, 4, and 11.

For each explicit atomic species, I, the set of kinetic equilibrium equations
may be written as

AI · nI = bI , (61)

where A is the rate matrix, n ≡ {n1, n2, . . . , nNLI
} is a vector of populations

(number densities) of all explicit levels (in all ionization stages); their number
being NLI . In the following, we will drop subscript I.

We stress that the term “level” means here either a genuine energy eigenstate
of an atom/ion, or several states lumped together (for instance a level composed
of all components of a multiplet), or even the so-called superlevel, which is an
aggregate of many different energy levels; for details, see § 3.6.

The elements of the rate matrix A are given by

Aii =
∑
j 6=i

(Rij + Cij), (62)
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Aij = −(Rji + Cji), for j 6= i and i 6= k, (63)

Akj = 1, for j = 1, . . . , NLI , (64)

where Rij and Cij are the radiative and collisional rates, respectively, and k is
the index of the characteristic level, i.e. the level for which the rate equation is
replaced by the particle conservation (abundance definition) equation.

Assuming i < j, the radiative rates are given by

Rij =
4π

h

∫ ∞
0

σij(ν)

ν
Jνdν, (65)

Rji =
4π

h

∫ ∞
0

σij(ν)

ν
Gij(ν)

(
2hν3

c2
+ Jν

)
dν, (66)

where σij(ν) is the corresponding cross section, and Gij(ν) is defined by

Gij(ν) ≡

{
gi/gj , for bound−bound,

neΦi(T ) exp(−hν/kT ), for bound−free.
(67)

where gi is the statistical weight, ne the electron density, and Φi(T ) is the
Saha-Boltzmann factor,

Φi(T ) =
gi

2g+
1

(
h2

2πmekT

)3/2

e(EI−Ei)/kT ; (68)

EI is the ionization potential of the ion to which level i belongs; Ei is the
excitation energy of level i, g+

1 is the statistical weight of the ground state of
the next ion, and me the electron mass.

If one adopts an occupation probability formalism that describes bound level
dissolution resulting from perturbations with neighboring particles (see § 2.6)
the above equation remains the same, replacing σij(ν)→ σij(ν)wj , and

Gij(ν) =

{
(giwi)/(gjwj), for bound−bound,

(wi/wj)neΦi(T ) exp(−hν/kT ), for bound−free.
(69)

where wi is the occupation probability of level i.
In many instances one employs the concept of detailed radiative balance.

It is defined such as the transition i ↔ j is in detailed radiative balance if
niRij = njRji. This is numerically equivalent to setting Rij = Rji = 0. This
concept is often used to compute intermediate NLTE models because they are
usually easier to converge than the full NLTE models.

The collisional rates, assuming that only collisions with free electrons are
important (again, i < j), are given by

Cij = neΩij ,

Cji = (n∗i /n
∗
j )Cij , (70)

where Ωij is the collisional cross section, and n∗i the LTE population of level i.
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The complete set of kinetic equilibrium equations is written as

A · n = b, (71)

where the full rate matrix A is a block–diagonal matrix composed of all the
individual matrices AI , and in a similar manner for the vector of populations n
and the right–hand–side vector b – see below.

In LTE, the kinetic equilibrium equation in the form of Eq. (71) is not solved.
Instead, the atomic level populations are determined by the Saha-Boltzmann
relation,

n∗i = nen
+
1 Φi(T ), (72)

where n+
1 is the population of the ground state of the next higher ion. It is often

instructive to introduce the NLTE departure coefficient, or a b-factor, as

bi ≡ ni/n∗i , (73)

that shows a magnitude of NLTE effects for a given level.

•Particle conservation equation
The set of rate equations for all levels of an atom would form a linearly

dependent system. Therefore, one equation of the set has to be replaced by the
number conservation; also called the abundance definition equation,

NLI∑
i=1

ni(1 + Si) = NI ≡ AINH = (N − ne)αI , (74)

where AI ≡ NI/NH is the abundance of the species I, defined here as a ratio
of the total number of atoms I, in all degrees of ionization, to the total number
of hydrogen atoms, per unit volume. The last equality introduces the notion
of fractional abundance, αI = AI

/∑
J AJ of the chemical element I. The

summation extends over all species, including hydrogen (for which, by definition,
AH = 1). tlusty usually works in terms of chemical abundances with respect
to hydrogen, but it also allows to define an abundance with respect to any other
species, called reference species, to be able to compute models of extremely
hydrogen–poor or even hydrogen–free atmospheres.

The set of abundances of the individual species forms another basic input
parameter of the problem.

The factor Si accounts for the (LTE) populations of the higher, non-explicit
levels, and is given by

Si =

{
0 if i is not the ground state an ion,

neΣJ if i is the ground state of ion J + 1.
(75)

where ΣJ is the so-called upper sum for an ion J which expresses the total
population of higher, non-explicit states of ion J . In the previous versions of
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tlusty it was expressed through its partition function as (Hubeny 1988)

ΣJ = (h2/2πmekT )3/2eχJ/kT (UJ/g
J+1
1 )−

NLJ∑
i=1

wiΦi(T ), (76)

where the first term represents the total population of ion J , and the second
term the LTE population of all explicit levels. Here χJ the ionization energy
of ion J , and UJ its partition function. However, an evaluation of the upper
sum using Eq. (76) may sometimes be inaccurate. Moreover, when one uses
a model atom with many explicit levels, the contribution of the upper levels is
very small. Therefore, a safe and still reasonably accurate approach for models
with a sufficient number of explicit levels is to set the upper sum to zero,

ΣJ = 0. (77)

This is actually used in tlusty, version 205, by default for all ions except
neutral hydrogen and hydrogenic ions.

An accurate way of expressing the contribution of upper states is by in-
troducing the so-called merged level. This approach is currently used only for
hydrogen and hydrogenic ions. A merged level is a sort of superlevel (see § 3.6)
representing all levels higher than the highest explicit regular level. Its popula-
tion is given by the sum of LTE populations of these states, computed with the
occupation probability (see § 2.6).

nmer =

N∗∑
j=NL+1

n∗j =

N∗∑
j=NL+1

nen
+
1 wjΦj(T ), (78)

where n+
1 is the population of the ground state of the next ion, which in the case

of hydrogen is the proton number density, n+
1 =np. N∗ is a large number, taken

in tlusty as 80, but its exact value does not matter because the occupation
probability for such high states is essentially zero.

A merged level is treated as an explicit level with statistical weight gmer =∑N∗

j=NL+1 wjgj exp(Ej/kT ), so that its Saha-Boltzmann factor is simply given

by Φmer(T ) = CT−3/2gmer/(2g
+
1 ), with C = (h2/2πmek)3/2. Its energy is for-

mally set to the ionization energy, Emer = Eion, and its occupation probability
wmer = 1 because the occupation probabilities of the individual components are
already included in gmer. For a treatment of transitions involving the merged
level, see § 2.5. If the merged level is set for an atom/ion I, then the upper
sum has to be set to zero, ΣI = 0, and all the level parameters are computed
analytically.

The choice of the characteristic level, denoted k, is arbitrary. Usually, one
either choses the last level (k = NLI), or a level with the highest population.
The elements of the right-hand-side vector b are given by

bi = (N − ne)αI δki, (79)
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that is, the only non-zero element of b is the term corresponding to level k.

•Charge conservation equation
The condition of global charge neutrality is expressed as∑

i

niZi +Q− ne = 0, (80)

where Zi is the charge associated with level i; that is, Zi = 0 for levels of neu-
tral atoms, Zi = 1 for levels for once ionized ions, etc., The summation in Eq.
(80) extends over all levels of all ions of all species. Quantity Q accounts for the
additional charge coming from the ions that are not treated explicitly – see § 2.7.

•Mass density, and fictitious massive particle density equations
The mass density is expressed in terms of atomic level populations as

ρ =
∑
i

mini, (81)

where mi is the mass of the atom to which level i belongs. It can also be
expressed as

ρ = (N − ne)µmH , (82)

where mH is the mass of the hydrogen atom, and µ the mean molecular weight,
defined by

µ =
∑
I

αI(mI/mH) =

∑
I AI(mI/mH)∑

I AI
(83)

where mI is the mass of an atom of species I.
One can also introduce a fictitious massive particle density, defined as

nm ≡ (N − ne)µ, (84)

so that the mass density can be written as

ρ = nmmH . (85)

This option is offered in tlusty, but is rarely used.

2.4 Absorption, emission, and scattering coefficients

•Absorption
The above set of structural equations has to be complemented by equations

defining the absorption and emission coefficients.
The absorption coefficient (or opacity) is given by

χν = κν + κsc
ν , (86)
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where κν is the extinction coefficient (sometimes called the true absorption
coefficient), and κsc

ν is the scattering coefficient. The extinction coefficient is
given by

κν =
∑
i

∑
j>i

[ni − njGij(ν)]σij(ν) +
∑
i

[
ni − nkGik(ν)e−hν/kT

]
σij(ν)

+
∑
κ

nenκσκκ(ν, T )
(

1− e−hν/kT
)

+ κadd
ν , (87)

where the first term represents the contribution of the bound–bound transitions,
the second term the bound–free transitions (with k being the final state of
the corresponding process), and the third term the free–free transitions. The
summations extends over all level of all species. The term κadd

ν represents any
additional opacity. It is used to account for opacity sources that are not written
in terms of explicit bound–bound or bound–free transitions.

The scattering part of the absorption coefficient is given by

κsc
ν = neσe +

∑
i

niσRay,i (88)

where the first term accounts for electron scattering, and the second term for
the Rayleigh scattering. Here σe is the Thomson cross section, σRay,i is the
Rayleigh scattering cross section of species i, and ni is the number density of
species i. The summation extends over all species for which Rayleigh scattering
gives a non–negligible contribution to the total scattering opacity.

For high-energy objects (extremely hot white dwarfs or hot accretion disks),
one may consider an inelastic electron scattering, called Compton scattering, as
described in Hubeny et al. (2001). A brief outline is given below, and for more
details refer to Paper III, § 12.5.

•Emission
The total emission coefficient is also given as a sum of thermal and scatter-

ing contributions. The latter refers only to continuum scattering ; scattering in
spectral lines is usually treated with complete frequency redistribution, in which
case the scattering is in fact a part of the thermal emission coefficient. The con-
tinuum scattering part is usually treated separately from the thermal part, and
the “thermal emission coefficient” is usually called the “emission coefficient.”
Specifically,

ηtot
ν = ην + ηsc

ν , (89)

where

ην = (2hν3/c2)

[∑
j

∑
j>i

njGij(ν)σij(ν) +
∑
i

nkGik(ν)σik(ν)e−hν/kT

+
∑
κ

nenκσκκ(ν, T )e−hν/kT
]

+ ηadd
ν . (90)
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The additional emissivity, if included, is usually given by ηadd
ν = κadd

ν Bν ; with
Bν being the Planck function. The form of the scattering part of the emission
coefficient depends on additional assumptions – see below. In the simple case
that we assume an isotropic phase function, and electron scattering is treated
as coherent Thomson scattering, then

ηsc
ν = κsc

ν Jν . (91)

• Scattering
Various scattering mechanisms are treated differently, depending on their

nature. The three types of scattering tlusty is designed to treat are the fol-
lowing:

– Thomson and Rayleigh scattering. These scattering processes are coherent
(without a change in frequency of the absorbed and scattered photon), and
they are also approximated to be isotropic. Consequently, their treatment is
simple. As follows from equations (88) and (91), the total source function is
given by

Stot
ν =

ην
χν

+
κsc
ν

χν
Jν , (92)

so that the scattering part of the source function, the second term in equation
(92), is simply proportional to the mean intensity at the same frequency, which
does not cause any numerical complications.

– Scattering in spectral lines, If one assumes complete frequency redistribution
in all lines, as is done in equation (90), the emission coefficient for lines does
not contain the radiation intensity explicitly (it enters implicitly through the
solution of kinetic equilibrium equation that contains radiative rates), so that
formally there is no distinction between the thermal and scattering processes in
a line.

tlusty also offers an approximate treatment of partial frequency redistri-
bution, through the so-called partial coherent scattering approximation; for a
detailed discussion, refer to Hubeny & Mihalas (2014; § 15.3). This option is
rarely used, and is briefly described in § 12.9.1.

– Compton scattering is a non-coherent electron scattering, which is particularly
important for high temperature models at high photon energies.. It is impor-
tant for hot accretion disks (Seyfert galaxies, X-ray binary disks), and also for
extremely hot white dwarfs, possibly with a hydrogen-burning layer on their
surface (the so-called super-soft sources), or pre-white dwarfs. Its treatment in
tlusty follows from the formalism of Hubeny et al. (2001), which is based on
a Kompaneets approximation (e.g., Rybicki & Lightman, 1979), for which the
Compton scattering part of the source function is given by

SCompt
ν = (1− x)Jν + (x− 3Θ)J ′ν + ΘJ ′′ν +

c2

2hν3
Jν2x(J ′ν − Jν), (93)

where

x =
hν

mec2
, Θ =

kT

mec2
, (94)
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and

J ′ν ≡
∂Jν
∂ ln ν

, J ′′ν ≡
∂2Jν
∂(ln ν)2

. (95)

A discretization of equations (93) and (95) and their implementation in the
linearization scheme, is described in detail in Hubeny et al. (2001; Appendix
A); see also Paper III, § 12.5.

2.5 Atomic transition processes

A treatment of atomic transitions, in particular the corresponding cross sections,
is an important ingredient of the modeling process, for both stellar atmospheres
and accretion disks. Although handling of transition cross sections is essentially
transparent for a casual user because most of the atomic data is communicated
to the code through the set of already prepared atomic data files (see Paper III,
Chap. 11), there is still a possibility for the user to choose from several options,
or add specific processes that operate on, or are important only for certain
classes of objects. This is done by specific keyword parameters, that are be
described in Paper III, Chap. 12.

The two essential classes of transitions are the radiative (an interaction of
an atom/ion with a photon) and the collisional (an interaction of an atom with
another particle, typically electron) transitions. We will briefly describe them
in the following.

2.5.1 Bound-bound radiative transitions

tlusty distinguishes two types of bound-bound processes (lines):
– ordinary line – a transition between two ordinary levels;
– superline – a transition involving a superlevel, i.e. a transition between an
ordinary level and superlevel, or between two superlevels.

• Ordinary lines
The cross section for an ordinary line that enters equations (65) and (66) for

radiative rates, as well as equations (87) and (90) for the opacity and emissivity,
is given by

σij(ν) =
πe2

mec
fijφij(ν), (96)

where fij is the oscillator strength, and φij(ν) is the normalized absorption pro-
file coefficient. There are several possibilities to adopt for the profile coefficient:

(i) Doppler profile,

φ(ν) =
1√

π∆νD
exp(−x2), (97)

where x = (ν − νij)/∆νD is the frequency displacement from the line center,
νij , expressed in units of the Doppler width, ∆νD. The latter is given by

∆νD =
νij
c

√
2kT

mA
+ v2

turb, (98)
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where mA is the mass of the atom, and vturb is the turbulent velocity. The
profile depends on temperature, and therefore depends on depth and changes
from iteration to iteration. Experience revealed (e.g., Werner 1987) that one can
safely use a simplified approach in which a characteristic temperature is chosen
[typically T = (3/4)Teff ] with which the line profile is computed at the beginning
and is stored for further use during the whole iteration process. This option is of-
fered in tlusty, and is often being used, although considering depth-dependent
Doppler profile does not lead to any significant additional time consumption.
There is an additional subtle point. The frequency points for a line are cho-
sen to provide accurate values of the integrals over frequency. Their setting is
also based on using a characteristic temperature. When a modest number of
frequency points is considered, using depth-independent Doppler profile assures
that the evaluation of radiative rates and other integrals over frequency is ac-
curate at all depth points, which is not necessarily true if a depth-dependent
profile is assumed. In order to treat a depth-dependent profile accurately at all
depth points, one would need to select many more frequency points.

(ii) Voigt profile,

φ(ν) =
1√

π∆νD
H(a, x), (99)

where H is the Voigt function, and a is the damping parameter expressed in
units of Doppler width, a = Γ/(4π∆νD). The damping parameter is usually
composed of three parts, corresponding to natural (lifetime) broadening, Stark
broadening, and Van der Waals broadening.

(iii) Special hydrogen line profiles. For the purposes of model construction it
is possible to consider hydrogen lines with a Doppler profile, as was done in
the past, see e.g. Mihalas (1978). However, it is preferable to take the profile
coefficients in a more accurate form. tlusty offers three possibilities, ordered
here with increasing accuracy:

– a simple approximation by Hubeny, Hummer, & Lanz (1995; Appendix A),
that essentially gives a Doppler profile in the line center, a Holtsmark profile in
the wings, and a simple bridging law in the intermediate region.
– using tables computed by Lemke (1997) for the first members of the Lyman,
Balmer, Paschen, and Brackett series up to the higher level with main quantum
number n = 10 (the tables contain more lines, but the results for lines with
n > 10 were found to be incorrect);
– using Tremblay-Bergeron (2009) tables, that take into account the effects of
level dissolution, and are therefore the most accurate ones, in particular for high
densities, and so preferable for instance for white dwarf models.

To describe an ordinary line, one therefore needs the oscillator strength (or,
equivalently, one of the Einstein coefficients), the line center frequency (which
is given by the difference of level energies), a switch indicating the choice of the
type of profile, and in case of a Voigt profile, parameters that specify the damp-
ing parameters. All these parameters are communicated to the code through
the corresponding entries in the input atomic data files – see Paper III, § 11.3
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and § 12.1.1.

• Superlines
The cross sections for superlines can be treated in two different ways:

– using the Opacity Distribution Functions (ODF); or
– using the Opacity Sampling (OS) approach.

The ODF approach, which consists of resampling a complicated composite
cross section for a superline to form a monotonic function of frequency, was
used in the past (e.g., Hubeny & Lanz 1995), and although it is still offered by
tlusty, it is outdated, and will not be described here.

The OS approach is the standard one used in tlusty to describe a superline
cross section. It is evaluated by summing the contributions from the individual
ordinary lines that form the superline. The name Opacity Sampling comes from
the fact that one computes the composite cross section for a set of frequency
points that are in principle randomly distributed, and do not necessarily have to
describe all the details of the exact cross section. In other words, the composite
cross section may miss cores of some lines, and may miss some windows between
lines, but in a statistical sense provides a reasonable description. The frequency
sampling used in tlusty is simply a set of equidistantly spaced frequencies with
a frequency step that is set up by input data. When decreasing the sampling
step, one in fact recovers an essentially exact form of the composite cross section.
This is the approach used for instance in the computed grids of NLTE metal
line-blanketed model atmospheres for O and B stars (Lanz & Hubeny 2003,
2007).

2.5.2 Bound-free radiative transitions

Bound-free (photoionization) cross sections for transitions from ordinary levels
are evaluated using various standard formulae. For hydrogen and hydrogenic
ions one uses the standard hydrogenic cross section (e.g., Hubeny & Mihalas
2014, eq. 7.91), viz.

σbf(ν) =
64π4Z4e10me

3
√

3ch6

ḡbf(n, ν)

n5ν3
= 2.815× 1029 Z4 ḡbf(n, ν)

n5ν3
, (100)

where n is the main quantum number of the lower bound state, Z is the charge
of the ion (Z = 1 for hydrogen), and ḡbf(n, ν) is the bound-free Gaunt factor.
By default, it is evaluated by an analytical approximation as in Mihalas et
al.(1975), but tlusty offers some alternative expressions. For details, refer to
Paper III, § 11.2.

For other species, the cross sections may be evaluated by various approx-
imate fitting formulae (which is an outdated option, although still available
in tlusty), or, for most transitions, by tabular values based on the Opacity
Project (OP – Seaton 1995) calculations. They are described in detail in Pa-
per III, § 11.2. The values are already included in the atomic data files, so that
the user does not have to provide any additional information, unless they want
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to change or improve the default cross sections. For levels for which no cross
sections are available, hydrogenic form is usually assumed.

The OP cross sections contain a number of photoionization resonances. Be-
fore transporting them to the tlusty input atomic data files, they are usually
smoothed, forming the so-called resonance-averaged profile (RAP), see, e.g., Al-
lende Prieto et al. (2003). The smoothing serves two purposes. Firstly, it
decreases the number of frequency points needed to represent the cross section.
However, since the number of frequencies is large anyway, this is not critical.
Secondly, and more importantly, it avoids spurious peaks in the cross sections
that may arise due to an insufficient frequency resolution adopted in the orig-
inal atomic structure calculations. The cross sections are then represented by
several tens up to several hundred values. For details, refer to Paper III, § 7.7.

For bound-free transitions from superlevels, the photoionization cross sec-
tions are pre-calculated by summing the cross sections of the individual compo-
nents, and stored in special input files – see Paper III, § 11.2.

The inverse process, the radiative recombination, is described by the same
cross section as for the photoionization. Because the cross sections include res-
onances, there is no need to consider the dielectric recombination as a separate
process, or requiring separate data for dielectronic recombination rate (although
such on option is also included in tlusty for historical reasons). For a discus-
sion of the physics, see Hubeny & Mihalas (2014, § 9.3), and for details on the
numerical implementation in tlusty, see Paper III, § 12.3.3.

2.5.3 Inner-shell photoionization

In order to better describe high temperature structures where the X-ray flux
is dominant, a simple treatment of the inner-shell photoionization, or Auger
process, has been implemented in tlusty by Hubeny et al. (2001). It employs
a simplifying assumption that if an Auger electron is energetically possible, than
it is in fact produced and the photoionization results in a jump by two stages
of ionization to a ground state configuration. Therefore, both fluorescence and
multiple Auger electron ejection arising from inner shell photoionization are
neglected. The necessary data were taken from the X-ray photoionization code
XSTAR (Kallman 2000)

In practice, a different structure of input atomic data is employed for ions
for which one allows inner-shell photoionization processes. They are described
in more detail in Paper III, § 11.7.

2.5.4 Free-free radiative transitions

The cross section is given by the standard formulae [e.g. Hubeny & Mihalas
(2014, eq. 7.100)]

σff (ν, T ) =

√
32πZ2e6ḡff (ν, T )

3
√

3ch(km3
e)1/2

1

T 1/2ν3
= 3.69× 108Z2ḡff (ν, T )

1

T 1/2ν3
, (101)
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where ḡff (ν, T ) is the free-free Gaunt factor. It is evaluated by the approximate
expression as in Mihalas et al. (1975). For non-hydrogenic ions, one still uses
formula (101) with the Gaunt factor set to unity, ḡff (ν, T ) = 1. In the past,
one usually employed a modified free-free cross section (Mihalas et al. 1975)
that contained a contribution of photoionization from higher, non-explicit levels
taken in a hydrogen approximation (since all these have a common ν−3 frequency
dependence). This option is still being offered in tlusty, but is essentially
obsolete. It is briefly described in Paper III, § 4.32.

2.5.5 Particle-induced transitions (collisions)

• Collisions with electrons
By default, one considers collisions with electrons, for both bound-bound

and bound-free transitions. The code contains a number of hardwired expres-
sions for evaluating the electron collision rates. The user can either employ a
default expression, or choose some other form of expression. For details, refer
to Paper III, § 11.2 and § 11.3.

• Charge transfer reactions
tlusty offers an option to include one such particular reaction, namely the

single electron exchange with neutral hydrogen,

XZ + H↔ XZ−1 + H+, (102)

in which species X in ionization stage Z exchanges an electron with hydrogen,
becoming an ion with charge Z − 1 (charge-exchange recombination), or an
inverse process (charge-exchange ionization). The reaction rates are taken from
Kingdon & Ferland (1996) who provide useful analytical fits to theoretical as
well as experimental results in the form

σrec(T ) = aT b4 (1 + edT4), (103)

with T4 = T/104, and a, b, d being the fitting parameters. For more details,
refer to Paper III, § 12.3.2.

2.6 Level dissolution; occupation probabilities, and pseu-
docontinua

An improved description of the atomic level populations and related transition
rates, also implemented in tlusty, adopts the concept of occupation probabil-
ities and level dissolution (Hummer & Mihalas 1988; Hubeny, Hummer & Lanz
1994; Hubeny & Mihalas 2014, § 9.4). It is based on introducing the occupation
probability of a level. In LTE, it is given through the generalized Boltzmann
formula,

(ni/nI)
∗ = wi(gi/UI)e

−Ei/kT , (104)

where the occupation probability wi is the probability that an atom is in state
i relative to that in a similar ensemble of non-interacting atoms. The same
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general definition applies also in the case of NLTE. Correspondingly, (1 − wi)
is the probability that the state i is dissolved, i.e., it lies in the continuum, or,
in other words, the corresponding electron instead of being in the bound state
j is in fact free.

The transition from a lower bound state i to the state j is therefore split
into two parts: (i) a transition to a non-dissolved fraction of the level forms an
ordinary line, while (ii) a transition to the dissolved fraction of the level is in
fact a bound-free process, called pseudocontinuum. The total pseudocontinuum
cross section is a sum of the contributions from the dissolved fractions of all
the states j higher than i. It is very difficult to compute it exactly; the current
expression is based on the approximation devised by Daeppen et al. (1987) and
Hubeny, Hummer, & Lanz (1994), viz.

σtot
ik (ν) = Di(ν)σext

ik (ν), (105)

where σext
ik (ν) = σik(ν) for ν ≥ νik is a usual cross section for the bound-free

transition from level i, while for ν < νik(ν) represents an extrapolated cross
section; νik is the ionization frequency from level i, and Di is the so-called
dissolved fraction, approximated by

Di(ν) =

{
1 if ν ≥ νik,

1− wmi∗(ν) if ν < νik.
, (106)

where mi∗(ν) = [i−2−(ν/νik)]−1/2 is an effective quantum number of the highest
state that can be reached from state i by the absorption of a photon with
frequency ν. It does not have to be an integer. Its occupation probability is
computed by the same analytic expression as for integer values, Eqs. (107) -
(108).

Equation (105) was derived, and is reasonably accurate, for frequencies
close to the ionization threshold. Since for decreasing frequency wmi∗ → 1
as mi∗ → 1, it was originally believed that Eq. (106) can be used even far from
the threshold, but it turned out that its contribution can be numerically non-
negligible or even in some cases dominant very far from the threshold where its
application is completely unphysical. Therefore, we have to introduce an em-
pirical cutoff, so equation (105) is applied only for ν > νcutoff . This quantity is
a parameter in tlusty transported through the atomic data file. Typically it is
taken as νcutoff ≈ 3×1015 for the Lyman pseudocontinuum, and νcutoff ≈ 7×1014

for the Balmer pseudocontinuum.
After Hubeny, Hummer, & Lanz (1994), the occupation probability is given

by

wi = f/(1 + f), with f =
0.1402(x+ 4Zra

3)β3
c

1 + 0.1285xβ
3/2
c

, (107)

where a = 0.09× n1/6
e T−1/2, x = (1 + a)3.15 and Zr is the radiator charge, and

the critical field strength βc is given by

βc = 8.59× 1014Z3n−2/3
e kii

−4, (108)
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where ki = 1 for i ≤ 3, and ki = (16/3)i/(i+ 1)−2 for i > 3.
When this formalism [based on an earlier version of the theory directly from

Hummer & Mihalas (1988)] was applied in actual models, it was found (Berg-
eron, Wesemael, & Fontaine 1991) that the agreement between predicted and
observed hydrogen line profiles of white dwarfs was significantly improved if the
critical field strength βc is multiplied by an empirical factor of 2. This cor-
rection was originally applied in tlusty as well; however, later it tuned out
that the Bergeron correction was relevant only to the original Hummer-Mihalas
expressions for occupation probabilities. When using an improved version (first
presented in Hubeny, Hummer, & Lanz 1994; Appendix A), such a correction
is unnecessary or even incorrect. This option is still included in tlusty for
testing purposes, but should not be used for actual models.

Eqs. (107) - (108) apply for perturbations by charged particles. For cooler
models one should also include occupation probabilities due to perturbations
with neutral perturbers. This is not yet implemented in the current version of
tlusty.

2.7 Equation of state and molecules

2.7.1 Atoms and ions only

In the original implementation of tlusty, the equation of state was not formu-
lated explicitly; it has only been used as a relation between the gas pressure P
and the total particle number density, N – see equation (13). At the same time,
the mass density is given by equation (82). The total particle number density
is given by the sum of all level populations of all individual explicit species in
all explicit ionization stages. However, such a simple definition would miss the
contribution of species that are not treated explicitly. To include them, one
selects a set of implicit species, which are usually all the remaining species that
are not treated explicitly (but their choice may be set differently by input data).
Their ionization balance is treated in LTE, that is, it is assumed to obey the
Saha equation,

(NI,J/NI+1,J) = ne (UI,J/UI+1,J) (h2/2πmekT )3/2 eχI,J/kT , (109)

supplemented by the condition for the total abundance of the element,∑
I

NI,J = NJ = (N − ne)αJ = (N − ne)AJ

/∑
J′

AJ′ , (110)

where J is the index of the atom to which the ions I belong, AJ is the abundance
of species J with respect to hydrogen, AJ ≡ NJ/NH , and αJ is the fractional
abundance. The additional charge Q in Eq. (80) is given by

Q =
∑
J

∑
I

NI,JZI , (111)

where ZI is the charge of ion I.
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The adopted chemical abundances may be set by the input data (see Pa-
per III, § 4.2), but if nothing is specified, the default abundances are given by
the solar abundances. The adopted solar abundances of the first 30 elements (by
number, with respect to hydrogen), essentially after Grevesse & Sauval (1998),
are listed in Table 2.

2.7.2 Standard evaluation of the partition functions

Let A be the atomic number, and Z the charge of the ion (Z = 0 for neu-
trals). The following references are used for the individual groups of species. In
some cases, there is a choice of several source, driven by additional input – see
Paper III, § 12.7.

• for A ≤ 30 and Z ≤ 4, unless specified otherwise (see Paper III, § 12.7),
an evaluation after Traving, Baschek, & Holweger (1966);

• for A ≤ 30 and Z ≤ 2, and for the local temperature T ≤ 16, 000 K, the
default partition function is evaluated after Irwin (1980);

• for A > 30 and Z ≤ 2, after Kurucz (1970);

• for A = 26 (Fe) or A = 28 (Ni), and 3 ≤ Z ≤ 8, after Sparks & Fischel
(1971);

• for 6 ≤ A ≤ 8 (CNO) and Z > 4, after Sparks & Fischel (1971).

• for A ≤ 30 (except C,N,O) and Z > 4, approximate partition function
given by the statistical weight of the ground state;

2.7.3 Molecules

The situation is more complicated when the formation of molecules begins to
contribute. In this case, one assumes that free atoms exist only in the neutral
and once ionized states, and that there is a number of molecular species. In this
case, we assume LTE. Their number densities are governed by a general Saha
equation

N+Z
1,...,m ≡ N

+Z
{1,m} =

∏m
i=1Ni
nZe

Φ (112)

where

Φ =
U+Z
{1,m}(2πM{1,m}kT/h

2)3/2
[
2(2πmekT/h

2)3/2
]Z∏m

i=1 Ui(2πMikT/h2)3/2
e−∆E/kT , (113)

with

∆E = E+Z
{1,m} −

m∑
i=1

Ei, (114)

where X+Z
{1,m}, with X ≡ N,U,M,E, denotes a quantity associated with com-

posite particle with charge Z composed of m atomic species 1, . . . ,m; some
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Table 2: Adopted solar abundances from Grevesse & Sauval (1998).

Element Nel/NH

H 1.0
He 1.00×10−1

Li 1.26×10−11

Be 2.51×10−11

B 5.00×10−10

C 3.31×10−4

N 8.32×10−5

O 6.76×10−4

F 3.16×10−8

Ne 1.20×10−4

Na 2.14×10−6

Mg 3.80×10−5

Al 2.95×10−6

Si 3.55×10−5

P 2.82×10−7

S 2.14×10−5

Cl 3.16×10−7

Ar 2.52×10−6

K 1.32×10−7

Ca 2.29×10−6

Sc 1.48×10−9

Ti 1.05×10−7

V 1.00×10−8

Cr 4.68×10−7

Mn 2.45×10−7

Fe 3.16×10−5

Co 8.32×10−8

Ni 1.78×10−6

Cu 1.62×10−8

Zn 3.98×10−8
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components may be identical. Here N,U,M,E stands for number density, par-
tition function, mass, and energy, respectively. Here we consider only Z = 0
or Z = 1; and for negative ions of atoms or molecules, electrons are considered
as a separate atomic species. The critical quantity of Φ is given either by its
definition, Eq. (113), if all the partition functions are available, or is represented
by a fitting formula, e.g., the one used by Kurucz (1970; eq. 4.35)

Φ(T ) = exp

[
∆E

kT
− b+ cT − dT 2 + eT 3 − fT 4 − 3

2
(m− 1− Z) lnT

]
, (115)

where ∆E, b, c, d, e, and f are the fitting parameters. For some species one
uses a different fitting formula by Tsuji (with data kindly supplied by Uffe
Jorgenssen, priv. comm.).

Equation (112) is supplemented by the set of particle conservation equations
for all considered chemical elements, A,

NS∑
k=1

N+Z
k cAk = NA = (N − ne)αA, (116)

and the charge conservation equation

NS∑
k=1

N+Z
k ZcAk = ne, (117)

where NS is the total number of species, atomic or molecular, Nk is the number
density of species k, where k numbers all composited species denoted with sub-
script {1,m}, and cAk is the number of atoms A in the species k (for instance, if
species k is water H2O, then cHk = 2, cOk = 1, and cXk = 0 for all other elements
X).

3 Numerical procedure

The set of structural equations (1) with boundary conditions (5) and (9), (15),
(16) or (19), (71), (80), and necessary auxiliary expressions, are discretized
in depth and frequency, replacing derivatives by differences and integrals by
quadrature sums. This yields a set of non-linear algebraic equations. Detailed
forms of the discretized equations are summarized in Hubeny & Mihalas (2014;
§ 18.1).

Upon discretization, the physical state of an atmosphere is fully described
by the set of vectors ψd for every depth point d, (d = 1, . . . , ND), ND being the
total number of discretized depth points. The full state vector ψd is given by

ψd = {J1, . . . , JNF , N, T, ne, n1, . . . , nNL, [nm], [∇], [z]}, (118)

where Ji is the mean intensity of radiation in the i-th frequency point; we
have omitted the depth subscript d. The quantities in the square brackets are
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optional, and are considered to be components of vector ψ only in specific cases:
nm if specifically selected; ∇ if convection is taken into account, and z in the
case of disks. The dimension of the vector ψd is NN , NN = NF + NL + NC,
where NF is the number of frequency points, NL the number of atomic energy
levels for which the rate equations are solved (i.e., explicit levels), and NC is
the number of constraint equations (NC = 3 in the standard atmospheric case,
but it can be as large as 6).

3.1 Linearization

Although the individual methods of the solution differ, the resulting non-linear
algebraic equations are solved by some kind of linearization. In the general case,
the solution proceeds as a direct application of the Newton-Raphson method.
Suppose the required solution ψd can be written in terms of the current, but
imperfect, solution ψ0

d as ψd = ψ0
d + δψd. The entire set of structural equations

can be formally written as an operator P acting on the state vector ψd as

Pd(ψd) = 0. (119)

To obtain the solution, we express Pd(ψ
0
d + δψd) = 0, and assuming that δψd is

“small” compared to ψd we use a Taylor expansion of P :

Pd(ψ
0
d) +

∑
j

∂Pd
∂ψd,j

δψd,j = 0. (120)

to solve for δψd. Because only a first–order (i.e., linear) term of the expan-
sion is taken into account, this approach is called a linearization. To obtain
the corrections δψd, one has to form a matrix of partial derivatives of all the
equations with respect to all the unknowns at all depths—the Jacobi matrix,
or Jacobian—and to solve equation (120). The kinetic equilibrium and charge
conservation equations are local, that is, for depth point d they contain the
unknown quantities ψd only at depth d. The radiative equilibrium equation
(in the differential form), and the hydrostatic equilibrium equation couple two
neighboring depth points d−1 and d. The radiative transfer equations couple
depth point d to two neighboring depths d−1 and d+1; see equations (1) – (8).
Consequently, the system of linearized equations can be written as

−Adδψd−1 + Bdδψd −Cdδψd+1 = Ld, (121)

where A, B, and C are NN × NN matrices, and L is a residual error vector,
given by

Ld = −Pd(ψ0
d). (122)

At the convergence limit, L→ 0 and thus δψd → 0.
Equation (121) is solved by a standard Gauss-Jordan elimination that con-

sists of a forward elimination

D1 = B−1
1 C1, and Dd = (Bd −AdDd−1)−1Cd, d = 2, . . . , ND, (123)
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and

Z1 = B−1
1 L1, and Zd = (Bd −AdDd−1)−1(Ld + AdZd−1), d = 2, . . . , N.

(124)
followed by a back-substitution

δψND = ZND, and δψd = Ddδψd+1 + Zd, d = ND − 1, . . . , 1. (125)

This procedure, known as complete linearization, was developed in the sem-
inal paper by Auer & Mihalas (1969). However, since the dimension of the
state vector ψ, that is the total number of structural parameters NN can be ex-
tremely large; for instance, in modern metal line blanketed model atmospheres
NF has to be taken few times 105, a direct application of the original complete
linearization is not practical. Various possibilities to improve the performance
of the method are discussed in detail in Hubeny & Mihalas (2014, § 18.3). There
are several variants of such improvements which are implemented in tlusty.

3.2 Hybrid CL/ALI method

The method, developed by Hubeny & Lanz (1995), combines the basic advan-
tages of the complete linearization (CL) and the accelerated lambda iteration
method (ALI). For a general description of ALI, refer to Hubeny & Mihalas
(2014; Chap. 13). The hybrid CL/ALI scheme is essentially a linearization
method, except that the mean intensity in some (most) frequency points is not
treated as an independent state parameter; instead it is expressed as

Jdi = Λ∗di(ηdi/κdi) + ∆Jdi, (126)

where d and i represent indices of the discretized depth and frequency points,
respectively, Λ∗ is the so-called approximate Lambda operator, and ∆J is a
correction to the mean intensity. The approximate operator, in most cases
taken as diagonal (local), so that its action is just an algebraic multiplication,
is evaluated in the formal solution of the transfer equation, and is held fixed in
the next iteration of the linearization procedure, and so is the correction ∆J .
Since the absorption and emission coefficients κ and η are known functions of
temperature, electron density, and atomic level populations, one may express
the linearization correction to mean intensity Jdi as

δJdi =
∑
x

Λ∗di
∂(ηdi/κdi)

∂xdi
δxdi, (127)

where x = (T, ne, ni), i.e., x stands for other state parameters –temperature,
electron density, and level populations.

Equation (127) shows that Jdi is effectively eliminated, thus reducing the
size of vector ψ to NN = NFCL + NL + NC, where NFCL is the number of
frequency points for which the mean intensity is kept to be linearized, called
explicit frequencies. As shown in Hubeny & Lanz (1995), such a number can be
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very small, of the order of O(100) to a few times 101. Typically, only frequencies
in the centers of the strongest lines, and a few frequencies just shortward of the
edges of the strongest continua, are kept to be linearized.

The choice of which frequencies are linearized is driven by input data. tlusty
can thus cover the whole range of options, from the pure complete linearization
(no frequencies treated with ALI), to full ALI, in which no frequency points are
linearized.

3.3 Rybicki scheme

An alternative scheme, which can be used in conjunction with either original
complete linearization, or a hybrid CL/ALI scheme, is a generalization of the
method developed originally by Rybicki (1969) for solving a line transfer prob-
lem. It starts with the same set of linearized state equations, and consists in
a reorganization of the state vector and resulting Jacobi matrix in a different
form. Instead of forming a vector of all state parameters in a given depth point,
it constructs a set of vectors of mean intensity, each containing mean intensities
in one frequency point for all depths,

δJi ≡ {δJ1i, δJ2i, . . . , δJND,i}, i = 1, . . . , NF, (128)

and analogously for the vector of temperatures

δT ≡ {δT1, δT2, . . . , δTND}. (129)

In the description of the method presented in Hubeny & Mihalas (2014; § 17.3),
an analogous vector δN for the particle number density was introduced, but
this is not done in tlusty.

The method is designed for LTE models, although it can in principle be used
for NLTE models as well, although in that case the convergence of the scheme is
usually quite slow. Nevertheless, in some cases it may provide a stable scheme
to obtain an intermediate NLTE model, from which one can then more easily
converge a NLTE model using the CL or hybrid CL/ALI scheme.

The point is to express all the material state parameters as functions of tem-
perature and density, and then to express the density as a function of temper-
ature, using the equation of state relating density to gas pressure, and keeping
the gas pressure fixed in a given iteration step. This procedure is impractical
for hot models where the radiation pressure represents a significant fraction of
the total pressure, but is quite reasonable for cool models where the radiation
pressure is small or negligible. In that case, P ≈ mg + P0 [see equation (11)],
and since m is used as the basic depth coordinate, the gas pressure is essentially
a known quantity.

The linearized radiative transfer equation (for inner depth points) can be
written as

d+1∑
d′=d−1

Udd′,iδJd′i +

d+1∑
d′=d−1

Rdd′,iδTd′ = Edi, (130)
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for i = 1, . . . , NF . In the matrix notation

UiδJi + RiδT = Ei, (131)

where Ui and Ri are ND×ND tridiagonal matrices that account for coupling of
the corrections to the radiation field at frequency νi and material properties as
functions of T , at the three adjacent depth points (d− 1, d, d+ 1). Analogously,
the contribution to the linearized energy equation from each frequency i at depth
point d is of the form

NF∑
i=1

ViδJi + WδT = F, (132)

where Vi and W are generally bi-diagonal matrices (in the differential form of
the radiative equilibrium; for the integral form they would be diagonal).

The overall structure here is reversed from the original variant, in the sense
that the role of frequencies and depths is reversed. The global system is a
block-diagonal (since the frequency points are not coupled), with an additional
block (“row”) with the internal matrices being tridiagonal. Corrections of mean
intensities are found from Eq. (131),

δJi = U−1
i Ei − (U−1

i Ri)δT (133)

substituting Eq. (133) into (132), one obtains for the correction of temperature(
W −

NF∑
i=1

ViU
−1
i Ri

)
δT =

(
F−

NF∑
i=1

ViU
−1
i Ei

)
, (134)

which is solved for δT., and then δJi are obtained from Eq. (133).
In this scheme, one has to invert NF tridiagonal; matrices Ui, which is very

fast, plus one inversion of the ND × ND grand matrix in Eq. (134), which is
also fast. Since the computer time scales linearly with the number of frequency
points, the method can be used even for line-blanketed models.

As stated above, the method is designed for LTE models, but experience
shows that the Rybicki scheme can also be applied to NLTE models. The scheme
is in this case equivalent to the Lambda iteration (because the corrections of
level populations and electron density are not solved simultaneously with the
corrections of temperature and radiations field), so it converges very slowly.
However, the method is quite stable and it may help avoid divergences that
sometimes plague traditional linearization methods. Therefore, although the
Rybicki scheme is not a viable option to construct well converged NLTE models,
it can be used for getting an intermediate model from which the full NLTE can
be converged more easily.

3.4 Acceleration methods

There are three numerical schemes offered by tlusty that belong to the cate-
gory of mathematical acceleration of convergence. They are discussed in detail
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in Hubeny & Mihalas (2014; § 18.4).

(1) The simplest possibility is the so-called Kantorovich method (Hubeny &
Lanz 1992). The scheme keeps the Jacobian fixed after a certain iteration,
so the subsequent iterations of complete linearization use the same Jacobian
(more accurately the inverse of the Jacobian is kept fixed for future use); only
the right–hand–side vectors L are re-evaluated after each iteration. Experience
with the method shows that it is surprisingly robust. Usually, one needs to
perform a few (3-5) iterations of the full linearization scheme, depending on
the problem at hand and the quality of the initial estimate. Also, it is some-
times very advantageous to “refresh” the Jacobian (i.e., set it using the current
solution and invert it) after a certain number of Kantorovich iterations. The
detailed setup is controlled by input data.

(2) Ng acceleration is a very popular acceleration scheme used in conjunction of
an ALI scheme for solving a radiative transfer problem (Auer 1984; Olson, Auer,
& Buchler 1986). In the context of accelerating a complete–linearization–based
scheme to calculate model stellar atmospheres was applied in Hubeny & Lanz
(1992).

The general idea is to construct a new iterate of the state vector based on the
information not only from the previous iteration step, as in a standard version
of an iterative linearization procedure, but also from still earlier steps. While
the number of earlier steps may vary, essentially all astrophysical applications
use the three–point version. Denoting x the collection of all state vectors ψd at
all depth points d, the “accelerated” iterate is written as a linear combination
of the three previous iterates,

x∗ = (1− a− b)x(n−1) + ax(n−2) + bx(n−3), (135)

where coefficients a and b are given by

a = (δ01δ22 − δ02δ21) / (δ11δ22 − δ12δ21) , (136)

b = (δ02δ11 − δ01δ21) / (δ11δ22 − δ12δ21) , (137)

where
δij ≡

(
∆x(n) −∆x(n−i)

)
·
(

∆x(n) −∆x(n−j)
)
, (138)

for i = 0, 1, 2, and j = 1, 2; and

∆x(n) ≡ x(n) − x(n−1). (139)

The scalar product in equation (138) is defined as

x · y ≡
ND∑
d=1

NN∑
i=1

Wdixdiydi, (140)

where Wdi is a weighting factor, taken in tlusty as Wdi = 1/ψdi. Experience
has showed that in a large majority of cases the Ng acceleration improves con-
vergence significantly; the acceleration is usually performed for the first time at
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or around the 7-th iteration of the linearization scheme, and is done typically
every 4 iterations afterwards. Again, the detailed setup is driven by input data
– see Paper III, § 7.4.8. In some cases, like in models with convection, or in
specific models with sharp ionization fronts, the Ng acceleration does not help,
and may even lead to numerical problems and divergence. Therefore, one should
apply the Ng acceleration judiciously.

(3) Successive over–relaxation (SOR). It consists in multiplying the corrections
δψ by a certain coefficient α. This coefficient can be either set by an educated
guess, or one can use the procedure suggested by Trujillo-Bueno & Fabiani-
Bendicho (1995), namely to express α in terms of the spectral radius of the
appropriate iteration operator, which in turn may be approximated by a ra-
tio of maximum relative changes of the source function in the two subsequent
previous iterations.

3.5 Treatment of opacities

The opacities are treated in tlusty in several different ways:
(1) The current opacities and emissivities are evaluated on the fly for the

current structural parameters (temperature, density, atomic level populations).
This is a traditional approach, which is moreover mandatory for NLTE mod-
els. In this approach, the absorption and emission coefficients are evaluated
essentially by using their definition equations (87) and (90). The actual transi-
tions that contribute to the total opacity are specified through selecting atomic
species, ions, and levels which are called “explicit”. Therefore, the transitions
between explicit levels of explicit ions of explicit atoms do contribute to the
total opacity. The opacity (emissivity) of an individual explicit transition is
a function of level populations of the lower and upper states, and the corre-
sponding cross section which in turn is a function of structural parameters such
as temperature, electron density, and possibly others. Since all these quanti-
ties are being updated during the iteration process, the opacity/emissivity is
recalculated again and again.

(2) A variant of this approach is the opacity and emissivity of “superlines”,
that is, transitions between “superlevels”. A superlevel is a set of individual
energy levels that are assumed to have the same NLTE departure coefficient or,
in other words, are in LTE within each other. For details, refer to § 3.6. As
explained there, relevant cross sections are evaluated at the beginning and are
held fixed afterward. Nevertheless, the corresponding superlevel populations
are being updated, so the corresponding opacities are still being re-evaluated
during the iteration process.

(3) As indicated in equations (86) and (90), tlusty also allows for the
so-called additional opacities. These are typically transitions between upper
levels of explicit species that are not treated explicitly, and also H+

2 or H−

opacity (if the H− ion is not treated explicitly) The user has an option to
include more additional opacities by means of adding corresponding expressions
to a previously provided subroutine. In all these cases, the corresponding cross
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sections are taken as analytic expressions, or from simple tables.
(4) While the above procedure is unavoidable for NLTE models, it is not

efficient for LTE models, where the opacity depends only on temperature and
density, and emissivity is given through the Kirchhoff-Planck relation, ην =
κνBν , In the past, LTE models were considered, within the context of tlusty
applications, just as intermediate models which provide suitable starting models
for the NLTE ones. However, once the range of applications of tlusty extended
to cool and very cool objects, such as the lower end of the main sequence,
brown dwarfs, and planetary atmospheres, LTE models, with possible additional
complexities such as molecular and cloud opacities, become important on their
own merit.

In this case, it is much more efficient to pre-calculate extensive tables of
opacity as a function of frequency, temperature, and density (or electron den-
sity). In an actual run of tlusty, one simply interpolates from the tabular
values of opacity to the current values of structural parameters and frequency.
Such an approach has been used in a previously separate variant of tlusty
called Cooltlusty (e.g. Hubeny, Burrows, & Sudarsky 2003), and was exten-
sively used for computing model atmospheres of brown dwarfs and extrasolar
planets.

Starting with version 204, such an approach has been adopted in the main-
stream tlusty as well. We do not use tables constructed specifically for sub-
stellar mass objects (Sharp and Burrows 2007) because they are not released for
public distribution. However, we have constructed opacity tables for tempera-
tures between 3,000 and 10,000 K, so that one can use these tables to compute
LTE model atmospheres for F and G type stars. The current tables do not
contain molecular opacities. Currently, we are working on preparing more ex-
tensive opacity tables, including molecular and cloud opacities, applicable for
the whole range of parameters.

In this approach one does not need to select explicit atoms, ions, levels,
and transitions, because the opacities are given and the kinetic equilibrium
equations are not solved. There is a choice how to treat the equation of state
and to evaluate the necessary thermodynamic parameters needed to describe
convection. This can be done either on the fly, in which case one has to supply
data for implicit species (abundances, a mode of evaluation of the partition
functions), or by interpolating in additional pre-calculated tables that specify
the equation of state (essentially a relation between density and pressure), and
also other thermodynamic variables needed to evaluate the convective flux – see
Paper III, § 13.1.

(5) Finally, there is a hybrid approach, in which some opacities (or bulk
of opacities) are treated explicitly (options 1 – 3 above), while the remaining
opacity sources, presumably less important ones, or those for which LTE is
a good approximation (such as molecular opacities) are treated by means of
an opacity table. Such an approach is already coded in tlusty, Version 205,
but an evaluation of the corresponding partial opacity tables was not yet fully
streamlined.
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3.6 Superlevels and superlines

Using the hybrid CL/ALI method, the number of frequency points can be re-
duced dramatically. However, the number of explicit levels needed for NLTE
metal line-blanketed model atmospheres may still be enormous. For instance,
each ion of Fe has of the order 104 energy levels.

To deal with this problem, one introduces the concept of a superlevel. The
idea consists of grouping several, possibly many, individual energy levels to-
gether, forming a superlevel. The basic physical assumption is that all genuine
levels j within a superlevel J are in Boltzmann equilibrium with respect to each
other,

nj/nj′ = gj/gj′ exp[−(Ej − Ej′)/kT ]. (141)

Therefore, the whole superlevel can be treated as one level for solving the kinetic
equilibrium equation. There is a certain flexibility in choosing a partitioning of
levels into superlevels. However, in order to provide a realistic description, the
levels forming a superlevel have to possess close energies, and to have similar
properties, for instance belonging to the same multiplet, the same spin system,
or having the same parity. The requirement of close energies is needed because
collisional rates between levels with a small energy difference tend to be large
and hence dominate over the radiative rates. With dominant collisional rates,
one indeed recovers LTE.

As mentioned in § 2.1, we have introduced also a special kind of superlevels,
called merged levels. They behave like normal superlevels, the only differences
are (i) they are introduced only for the higher states of hydrogen and hydrogenic
ions, and (ii) therefore, their parameters, and the necessary cross sections for
transition involving them are computed analytically, without a need of addi-
tional data.

Bound-bound transition involving at least one superlevel are called super-
lines. The absorption coefficient for a transition I → J , not corrected for
stimulated emission, is given by

κIJ(ν) =
∑
i

∑
j

niwjσij(ν), (142)

where σij(ν) = (πe2/mec)fijφij(ν), is the cross section for the transition i→j,
fij is the oscillator strength, and φij(ν) the (normalized) absorption profile
coefficient, ni and wj are the population of the lower level, and the occupation
probability of the upper level, respectively.

Within the superlevel formalism, the absorption coefficient for transition
I → J has to be given by [for details, refer to Hubeny & Mihalas (2014, § 18.5)]

κIJ(ν) = nIwJσIJ(ν); (143)

therefore the cross section is given by

σIJ(ν) =
gI exp(−EJ/kT )

∑
i

∑
j giwiwjσij(ν) exp(−Ei/kT )[∑

i giwi exp(−Ei/kT )
][∑

j gjwj exp(−Ej/kT )
] , (144)
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and

wJ =
exp(EJ/kT )

gJ

∑
j

gjwj exp(−Ej/kT ). (145)

which has the meaning of generalized occupation probability for superlevel J .
It should be noted that in general wJ 6= 1 even if one sets all the occupation
probabilities of the components j to wj = 1.

Since the number of individuals levels forming a superlevel may be quite
large (of the order of several tens to several hundreds), and so the number of
individual lines forming a superline may be huge (say, of the order of 104 to
105, or perhaps even more), the resulting superline cross section is a rather
complicated function of frequency. It would be impractical to compute it for
every depth point independently; moreover the amount of necessary atomic data
(the individual oscillator strengths, the line broadening parameters) will also be
impractically large. Therefore, the superline cross sections are evaluated at the
beginning of a given tlusty run, and subsequently held fixed, for several depth
points (typically 3, but this number is a free parameter and can be changed
if needed). For other depth points, they are interpolated. As stated in § .2.5,
the cross sections to be used in tlusty are evaluated by means of the so-called
Opacity Sampling (OS), that is at frequency points that are set by the code to
cover the whole range of a superline, and with a frequency spacing that is given
by a certain multiple of a fiducial Doppler width1. This spacing is also a free
parameter. For most accurate models (such as the OSTAR2003 and BSTAR2007
grids of NLTE line-blanketed model atmospheres of O and B stars – Lanz &
Hubeny 2003; 2007), the spacing was taken as 0.75, but it can be taken much
higher; as shown in Lanz & Hubeny (2003), even vales such as 40-50 produce
reasonably accurate model atmospheres.

In the past, the superline cross sections were treated by means of the Opacity
Distribution Function (ODF) – see Hubeny & Lanz (1995), which uses a resam-
pled cross section that is represented by a low number of frequency points.
However, this option is not accurate enough because it does not treat the over-
laps of superlines properly. Also, it requires additional input files that contain
the tabulated ODF values. Although it is still offered in tlusty, it is not
recommended.

The superline cross sections are computed at the beginning of the calculation
based on data from Kurucz files, for instance, for Fe II the files gf2601.gam and
gf2601.lin. The former file contains parameters for the individual energy
levels (energy, statistical weight, quantum numbers), while the latter contains
the data for individual lines (oscillator strengths, broadening parameters).

The concept of an ODF is also used for treating the opacity in a transition
form a regular level to a merged level in the case of hydrogen and hydrogenic
ions. In this case, however, the ODF is constructed on the fly because the
cross sections for the individual lines forming such a superline can be computed
analytically. Some additional input parameters to construct such an ODF are

1Fiducial Doppler width is defined as a Doppler width for Fe corresponding to the effective
temperature
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described in Paper III, § 11.3. However, even this option is somewhat obsolete,
as it is possible to treat the hydrogen atom with many explicit levels (say, 16
or more), in which case the higher levels are mostly dissolved, and the opacity
in the transitions from lower levels into the merged level are described through
the pseudocontinuum opacity.

3.7 Level grouping and zeroing

Another procedure, which may significantly reduce the number of level popu-
lations to be linearized is the idea of level grouping. A level group is a set of
several levels whose populations are assumed to vary in a coordinated way in
the linearization. More precisely, instead of linearizing individual level popula-
tions, one linearizes the total population of the group, assuming that the ratios
of the individual level populations within the group to the total population of
the group are unchanged during a current linearization step. In the formal so-
lution step, one solves the kinetic equilibrium equations for all the individual
level populations.

The concept of level groups should not be confused with the concept of
superlevels; in the former case, the level groups are only a numerical trick to
make the complete linearization matrices smaller, while the level populations are
determined exactly; the latter case—superlevels—approximates the individual
populations of the components of the superlevel by assuming that they are in
Boltzmann equilibrium with respect to each other. In fact, one may group the
individual superlevels into level groups as well.

Another numerical trick used in tlusty is a level zeroing. For each depth
point, the code examines a ratio of level populations to the total population of
an ion. If this value decreases below a certain value (a free parameter, typically
taken 10−20), the level population of such a level is set to zero, and the kinetic
equilibrium equation for such particular depth point is written as ni = 0 (that
is, in a matrix form, Aii = 1, Aij = 0 for i 6= j, and bi = 0). The level still
remains in the set of explicit level since its population might be non-negligible
or even significant in other depth points. If, however, the population would
be zeroed in all depth points, the level is completely removed from the set of
explicit levels. This procedure helps to improve a numerical stability of the
system, avoids solving for level populations which are of no practical interest,
and also allows the user to use relatively general atomic data sets with many
ions.

3.8 Formal solution

The term “formal solution” is used in two different meanings:
(i) In a limited context, the “formal solution of the transfer equation” means

a solution of this equation for one frequency at a time, with the specified source
function. At this step the Eddington factors are being evaluated.

(ii) The set of all calculations between two iterations of the global iteration
(i.e., linearization) scheme. In the standard case, it means a simultaneous so-
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lution of the radiative transfer and kinetic equilibrium equations, keeping the
values of other state parameters (temperature, density, electron density) fixed
at the current values. Depending on the setup of the run, it may also include
the recalculation of other state parameters, such as electron density, or mass
density, or even temperature. The point of this procedure is to help the global
iteration scheme to converge faster by improving the values of the state vector
as much as possible before entering the next iteration step. It will be called here
global formal solution.

3.8.1 Formal solution of the transfer equation

tlusty offers several types of the formal solution which are selected by means
of input data. A detailed description of the schemes is presented in Hubeny &
Mihalas (2014; § 12.4).

Briefly, discretizing in frequency and angle, the transfer equation is written
as

µm
dInm
dτn

= Inm − Sn (146)

where Inm is the specific intensity at frequency point n and angle point m; µm
is the cosine of the polar angle. Sn is the source function, given by

Sn =
κn
χn

+
σn
χn

∑
m′

wm′Inm′ . (147)

The last term represents the scattering part of the source function, assuming
isotropic and coherent scattering (e.g. Thomson electron scattering; the case of
non-coherent Compton scattering is described in Paper III, § 12.5); wm are the
angular quadrature weights.

The default method of solution is the Feautrier method that introduces sym-
metric and antisymmetric averages of the specific intensity, more specifically
jnm ≡ [In(µm) + In(−µm)]/2, and hnm ≡ [In(µm)− In(−µm)]/2, and rewrites
the transfer equation (146) in a second-order form,

µ2
m

d2jnm
dτ2
n

= jnm −
κn
χn
− σn
χn

NA∑
m′=1

wm′Inm′ , (148)

where NA is the number of angle points in one hemisphere (µ > 0). This
equation is supplemented by the boundary conditions

µm
djnm
dτn

∣∣∣∣
0

= jnm(0)− Iext
nm, (149)

where Iext
nm is the incoming specific intensity I(νn,−µm). Equation (149) is

only first-order accurate. Auer (1967) suggested a convenient second-order from
which is based on a Taylor expansion

jnm(τ2,n) = jnm(τ1,n) + ∆τ3/2,n
djnm
dτn

∣∣∣∣
1

+
1

2
(∆τ3/2,n)2 d

2jnm
dτ2
n

∣∣∣∣
1

, (150)
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which is used to achieve a second-order accuracy,

µm
jnm(τ2n)− jnm(τ1n)

∆τ3/2,n
= jnm(τ1n) + ∆τ3/2,n

jnm(τ1n)− Sn(τ1n)

2µm
. (151)

and for the lower boundary

µm
djnm
dτn

∣∣∣∣
τmax

= I+
nm(τmax), (152)

where I+
nm(τmax) is the outward-defected specific intensity at the deepest point,

given either by the diffusion approximation (for stellar atmospheres)

I+
nm(τmax) = B(νn, τmax) + µm

∂B(νn)

∂τνn

∣∣∣∣
τmax

, (153)

or by a symmetric lower boundary condition (for accretion disks)

µm
djnm
dτn

∣∣∣∣
τmax

= 0. (154)

All frequency points in Eqs. (148) – (154) are independent, so that they
can by solved for one frequency at a time. We skip the frequency index n
and discretize in depth, described by index d. One introduces a column vector
jd ≡ (jd,1, jd,2, . . . , jd,NA), and writes Eqs. (148) – (154) as a linear matrix
equation

−Adjd−1 + Bdjd −Cdjd+1 = Ld, (155)

where Ad, Bd, and Cd, are NA×NA matrices; A and C are diagonal, while B is
full. The system is solved by the standard Gauss-Jordan elimination, equivalent
to Eqs. (123) - (125). In terms of j, the mean intensity and the Eddington factor
are given by

Jn =

NA∑
m=1

wmjnm, and fn =

NA∑
m=1

wmµ
2
mjnm

/
Jn. (156)

The program offers several variants of the Feautrier scheme: scheme

• ordinary second–order Feautrier (1964) scheme;
• improved scheme by Rybicki & Hummer (1991);
• spline collocation scheme (Mihalas & Hummer (1974);
• Auer (1976) fourth-order Hermitian scheme.

By the nature of the Feautrier scheme, all these methods solve the transfer
equation for one frequency, but all angle points, at a time. This involves solving
the transfer equation for vectors of specific intensities for all angles (with number
NA, with a need of inverting a number of NA×NA matrices. Since the typical
value of NA is quite low (NA = 3 by default, which corresponds to 6 actual
discretized angles) inverting such matrices does not present any problem or any
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appreciable time consumption. The basic advantage of the Feautrier scheme is
that it treats scattering directly, without any need to iterate.

However, if the number of angles is large (for as comparison purposes, or
some very specific applications), or if an atmospheric structure exhibits very
sharp variations with depth (e.g., sharp ionization fronts), it is advantageous to
use another offered scheme:

• Discontinuous Finite Element (DFE) scheme by Castor, Dykema, & Klein
(1992). It solves the linear transfer equation (146) directly for the specific
intensity, and therefore if scattering is present, which is essentially always, the
scattering part of the source function has to be treated iteratively. To this
end, a simple ALI-based procedure is used; its setup is described through the
corresponding input parameters – see Paper III, § 7.4.3 and § 13.1.

3.8.2 Global formal solution

The main part of the global formal solution is a simultaneous solution of the
radiative transfer equation and the set of kinetic equilibrium equations for all
explicit levels. Notice that in this step the levels that form a group that is
linearized as a single level are now treated separately, so that the populations
of the individual levels in the group are updated.

This is a typical NLTE line formation problem. The main point is that
the solution does not have to be perfect; it is only supposed to provide a some-
what more consistent values of level populations and radiation intensities before
entering the next global iteration step. Therefore, in the past, one employed
several ordinary Lambda iterations, that is, an iterative solution that alternates
between solving the transfer equation for the current values of level popula-
tions, and solving the kinetic equilibrium equations with the current values of
radiation intensities.

Later, this procedure was upgraded to treat the coupled problem more ef-
ficiently using the ALI technique together with preconditioning, developed by
Rybicki & Hummer (1991, 1992); for a description see Appendix B1, and for
more details refer to Hubeny & Mihalas (2014; § 14.5). This scheme offers an
interesting possibility to solve the so-called restricted NLTE problem (line for-
mation with fixed atmospheric structure), without a linearization, provided that
one allows for enough iterations of the global formal solution step. We recall
that there are several computer programs designed specifically for this problem
– the “Kitt Peak code” of Auer (1973), PANDORA (Avrett & Loeser 1982),
MULTI (Carlsson 1986), DETAIL/SURFACE (Butler & Giddings 1978) and
others.

In parallel with, or on top of, this procedure, one can perform other “formal”
solutions, essentially updating one state parameter by solving the appropriate
equation, while keeping other state parameters fixed. These include:
– updating electron density by solving the charge conservation equation;
– updating pressure by solving the hydrostatic equilibrium equation;
– updating temperature, by solving the radiative (or radiative + convective)
equilibrium equation.
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A particularly important set of procedures is devised for models with con-
vection, where in the global formal solution step one has to iteratively improve
the temperature and other state parameters to smooth the solution that follows
directly from the previous iteration step. In many cases, not using such pro-
cedures would have disastrous consequences for the convergence properties, or
even lead to a violent divergence of the iteration scheme. These procedures will
be described in Appendix B2.

3.9 Discretization parameters

As stated above, the program is fully data-oriented. Both the genuinely discrete
quantities, (number of explicit atoms, ions, levels, transitions, etc,), as well as
discretized quantities (number of depth points, frequency points, etc.), are either
set up directly (e.g. the number of depth points), but typically they are being
computed by the code based on the actual input. Therefore, they are not known
a priori.

Since tlusty can be used for a wide range of applications, these numbers
can be vastly different for various cases. As described in the next chapter, the
code can be compiled differently for different applications in such a way that it
does not require an unreasonable amount of core memory, and still reflects the
needs based on the selected setup.

We list most of these important numbers below, using the names trey are
referred to in the tlusty source code.

NATOM – number of explicit atoms. Each explicit atom is composed of one
or several ionization stages, called explicit ions. The highest ionization
stage has to be considered as a one-level ion.

NION – number of explicit ions. The highest ionization stage is not counted
in the number of explicit ions.

NLEVEL – number of explicit levels, defined such as these are the energy
levels for which the kinetic equilibrium equation is being solved, and whose
populations can therefore depart from their LTE values. The one-level
highest ions of the explicit species are now counted into the total number
of levels. The individual superlevels and merged levels are counted as one
level each.

NLVEXP – number of explicit levels whose populations are linearized. This
number is equal to NLEVEL if all levels are treated individually, but
is lower than NLEVEL if one introduces level groups. In many cases,
NLVEXP is significantly lower that NLEVEL; for instance in the example
in Paper III, § 6.3, NLEVEL=1127 while NLVEXP=222 (there, we show
them as MLEVEL and MLVEXP in an output from the code pretlus
where they represent the actual values of these parameters for the given
model).
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NTRANS – number of transitions, both bound-bound and bound-free, be-
tween explicit energy levels. All transitions that are somehow taken into
account are counted into this number even if they are set in detailed
radiative balance or are dipole-forbidden, since in both these cases, the
collisional rates still have non-zero values.

ND – number of discretized depth points

NFREQ – the total number of discretized frequency points. Since the selection
of frequencies is very important for the overall accuracy of the resulting
model, the selection of frequency points is set by the program based a
number of input parameters – see Paper III, § 7.4.2. When computing
metal line–blanketed models with a large number of superlevels and su-
perlines, the program first sets the frequency points independently for
each line and superline, and computes the corresponding cross section in
these frequencies. Since there is typically a large number of line overlaps,
the program then removes some unnecessary points originating from line
overlaps.

NFREQP – the number of auxiliary frequency points in the original setup.
This number is typically larger than MFREQ, and the reason that is kept
separate is that there are only a few arrays in the code that have to have
dimension NFREQP or larger, while there is a number of arrays, many
of them multidimensional, for the final set of frequencies with number
NFREQ,

NFREQC – number of frequency points in the continua. This set contains
the frequencies that do not specifically belong to any line, although the
opacity of some wide lines (e.g. Lyman α) may still contribute to the total
opacity in such frequencies.

NFREX – number of frequency points in which the mean intensity is lin-
earized. When using the hybrid CL/ALI method, this number is signifi-
cantly smaller than NFREQ.

NFREQL – the maximum number of frequency points per line.

NTOT≡NN – the dimension of the state vector ψ, that is, the number of
the state parameters. It is given by NFREX+NLVEXP+NC, where NC
is the number of structural parameters other than the mean intensities
and level populations that are linearized. As explained in § 3.1, NC can
attain values between 0 (when the atmospheric structure is held fixed), to
6 (for accretion disk with convection and with including fictitious massive
particle density; the physical quantities then being T , N , ne, nm, z, and
∇). A typical value for stellar atmospheres is 3, for T , N , and ne.

NMU – number of angle points for the formal solution of the transfer equation
and determination of the Eddington factor. Its default value is 3, but can
be changed by an appropriate input parameter – see Paper III, § 7.4.6.
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There are several secondary numbers that specify the sizes of some multi-
dimensional arrays. (The lengths of 1-dimensional arrays are not important;
they may oversized to satisfy the requirements following from any physical setup
without causing memory problems). They include the following:

NLINES(IJ) - number of lines that contribute to the opacity at frequency
point IJ (that is, the total number of line overlaps at frequency IJ)

NBF – the number of bound-free transitions

NFIT – the maximum number of fit points for the input of the photoionization
cross sections when using the Opacity Project data.

NCDW – number of levels with pseudocontinua

NMER – number of merged levels

NVOIGT – number of lines with a Voigt profile

There are also several arrays that are set only for the treatment of superline
cross sections, that is, when computing metal line-blanketed models. These
arrays may be rather big and take a lot of memory. It it not advised to set
them to the maximum values for all kinds of models. The dimensions of these
files are the following:

NDODDF – number of depth points for storing the superline cross sections.

NKULEV – the maximum number of internal energy levels for an ion treated
with superlevels. The data for these levels are read from Kurucz files, e.g.
gf2601.gam for Fe II.

NLINE – number of internal (genuine) lines for an ion; data for them are read
from Kurucz files, e.g. gf2601.lin for Fe II. Based on these data, the
superline cross sections are constructed.

NCFE – the total number of internal frequency points used for computing and
storing the cross section or the individual lines, from which the superline
cross section is constructed.

4 Initial LTE-gray model

4.1 Stellar atmospheres

The procedure to construct the initial LTE-gray model is very similar to that
described by Kurucz (1970).

One first sets up a scale in the Rosseland optical depth, typically logarithmi-
cally equidistant between τ1 and τD, which are input parameters of the model
construction; typically chosen τ1 ≈ 10−7 and τD ≈ 102. Temperature is a known
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function of the Rosseland optical depth (e.g. Hubeny & Mihalas 2014, $ 17.2
and 17.7):

T 4(τ) = (3/4)T 4
eff [τ + q(τ)] + (π/σR)Hext (157)

where q(τ) is the Hopf function, and Hext =
∫∞

0
Hext
ν dν is the frequency-

integrated external irradiation flux.
The hydrostatic equilibrium equation is written as

d lnP

d ln τ
=

gτ

κP
, (158)

because τ and P span many orders of magnitude, so it is advantageous to
integrate the equation for logarithms. Here κ is the Rosseland mean opacity.

The total pressure P = Pgas +Prad (we neglect the turbulent pressure here).
The radiation pressure is expressed as follows: Its gradient can be approximated
as

dPrad/dτ ≈ (4π/c)

∫ ∞
0

(dKν/dτν) dν = (4π/c)

∫ ∞
0

Hνdν = (σR/c)T
4
eff , (159)

where the first equality follows from Eq. (14), and the last one from the defini-
tion of the effective temperature. The radiation pressure is thus given by

Prad(τ) = (σR/c)T
4
effτ + P 0

rad, (160)

where P 0
rad is the radiation pressure at the surface. Using the Eddington ap-

proximation [Kν = (1/3)Jν , and H0
ν = (1/

√
3)J0

ν ], it is approximated by

P 0
rad = (4π/c)

∫ ∞
0

Kνdν ≈ (σR/c)(1/
√

3)T 4
eff . (161)

One then proceeds by solving Eq. (159) from the top of the atmosphere
to the bottom. At the first depth point, τ1, one makes a first estimate of the
Rosseland mean opacity, κ1, and assuming it is constant from this point upward,
and using the boundary condition Pgas(0) = 0, one obtains the first estimate of
the total pressure,

P1 = (g/κ1)τ1 + P 0
rad. (162)

Having an estimate for the total pressure, one uses the following procedure
which is valid for every depth point d:

• from current total pressure Pd, at depth point d, one first extracts the gas
pressure, Pgas = P − (σR/c)T

4
effτd − P 0

rad;

• from the known temperature T (τd), given by Eq. (157), we compute the
total particle number density N = Pgas/(kT );

• with known T and N , one determines the electron density ne by solving
the set of Saha equations and the charge equilibrium equation;
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• with known T and ne, one computes LTE level populations of all explicit
levels of all explicit ions;

• using these level populations, one computes monochromatic opacities for
all selected frequency points, and consequently the new value of the Rosse-
land mean opacity κ from its definition,

1

κ
=

∫∞
0

(1/χν)(dBν/dT ) dν

(dB/dT )
. (163)

We will refer to this procedure as P→κ. With the new value of κ, one returns
to Eq. (162), evaluates an improved estimate of P1, and repeats the procedure
P → κ until convergence. Once this is done, one proceeds to the next depth
point.

For the next three depth points, d = 2, . . . , 4, one obtains the first estimate
(a predictor step) of the total pressure by:

lnP pred
d = lnPd−1 + ∆ lnPd−1, (164)

which is followed by a P → κ procedure, and with the new κ one goes to the
corrector step,

lnPd = (lnP pred
d + 2 lnPd−1 + ∆ lnPd + ∆ lnPd−1)/3, (165)

where
∆ lnPd =

gτd
κdPd

(ln τd − ln τd−1). (166)

For the subsequent depth points, one uses the Hamming’s predictor-corrector
scheme (see Kurucz 1970), where the predictor step is

lnPd = (3 lnPd−4 + 8 lnPd−1 − 4∆ lnPd−2 + 8∆ lnPd−3)/3, (167)

and the corrector step

lnPd = (126 lnPd−1 − 14 lnPd−3 + 9 lnPd−4 + 42∆ lnPd

+108∆ lnPd−1 − 54∆ lnPd−2 + 24∆ lnPd−3)/121. (168)

After completing the above procedure for all depths, one constructs the column
mass scale, which will subsequently be used as the basic depth scale, as

md = (Pd − P 0
rad)/g. (169)

When convection is taken into account, one first computes the radiative
gradient of temperature,

∇rad,d =
(Td − Td−1)

(Pd − Pd−1)

(Pd + Pd−1)

(Td + Td−1)
, (170)

and compares to the adiabatic gradient, ∇add. If ∇rad > ∇add, the criterion for
stability against convection is violated, we must determine the true gradient ∇,
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where ∇ad ≤ ∇ ≤ ∇rad, that gives the correct total, radiative plus convective,
flux. If the instability occurs deep enough for the diffusion approximation to
be valid, then (Frad/F ) = (∇/∇ad), and the energy balance equation reads (see
Hubeny & Mihalas 2014, § 17.4),

A
(
∇−∇el

)3/2
= ∇rad −∇, (171)

where ∇el is the gradient of convective elements, and

A = (∇rad/σRT
4
eff)(gQHP /32)1/2(ρcPT )(`/HP )2. (172)

We see that A depends only on local variables. Adding
(
∇−∇el

)
+
(
∇el−∇ad

)
to both sides of (171), and using the expression ∇el−∇ad = B

√
∇−∇el, where

B is given by Eq. (22), to eliminate
(
∇el − ∇ad

)
, we obtain a cubic equation

for x ≡
(
∇−∇el

)1/2
, namely

A
(
∇−∇el

)3/2
+
(
∇−∇el

)
+B

(
∇−∇el)

1/2 =
(
∇rad −∇ad

)
. (173)

or
Ax3 + x2 +Bx =

(
∇rad −∇ad

)
, (174)

which can be solved numerically for the root x0. We thus obtain the true
gradient ∇ = ∇ad + Bx0 + x2

0, and can proceed with the integration, now
regarding T as a function of P and ∇.

4.2 Accretion disks

The adopted procedure closely follows that described in detail by Hubeny (1990).
An evaluation of the LTE-gray model proceeds in three, possibly four, basic
steps:

1. Initialization of m, ρ, P , and z.
Unlike the case of stellar atmospheres, one first sets up a column mass scale,

based on an empirically chosen m1, the column mass at the first depth point,
and m0, the column mass at the central plane. The latter is determined as
described in § 2.2. The individual mass-depth points are set logarithmically
equidistant between m1 and m0. One then calculates an initial estimate of the
density ρ and the vertical distance z corresponding to the column masses md,
using the following procedure:

One introduces the characteristic gas pressure and radiation pressure scale
heights Hg and Hr as

Hg = (2c2g/Q)1/2 (175)

Hr = (σR/c)T
4
effκ/Q, (176)

where Q is the gravity acceleration parameter defined by Eq. (54), κ is the
Rosseland mean opacity, and cg is the isothermal sound speed associated to the
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gas pressure, cg = (Pg/ρ)1/2. It is generally given by

c2g =
k

µmH

N

N − ne
T, (177)

where µ is the mean molecular weight, and mH is the hydrogen atom mass. The
factor N/(N − ne) accounts for a varying degree of ionization of the material;
for a pure-hydrogen gas it attains values between 1 (for completely neutral gas)
to 1/2 (for completely ionized gas).

The sound speed is initially taken as depth-independent, corresponding to
the effective temperature, The initial estimate of κ for the first depth point is
κ1 = σe/(µmH). One introduces two dimensionless parameters,

r ≡ Hr/Hg, y ≡ H/Hg, (178)

where H is a combined scale height, given by the solution of the following
transcendental equation

y =

√
π

2

(
y

y − r

)1/2{
1− erfc

[√
y(y − r)

]}
+ erfc(y− r) exp[−r(y− r)], (179)

which is solved by the Newton-Raphson method, with the initial estimate
y0 = r + (1/r) for r > 1, and y0 =

√
π/2 for r ≤ 0. The geometrical distance

from the central plane expressed in units of gas pressure scale height, x ≡ z/Hg,
is given by (Hubeny 1990),

x = r + inverfc

{
m

m0

2y√
π

exp[r(y − r)]
}

for x ≤ y,(180)

x =

√
y

y − r
inverfc

{√
4y(y − r)

π

m−my

m0
+ erfc

[√
y(y − r)

]}
for x > y,(181)

where

my = m0

√
π

2y
exp[r(y − r)] erfc(y − r), (182)

and inverfc(x) is the inverse complementary error function, which can be eval-
uated by a suitable fitting formula (see Hubeny 1990).

The first estimate of density is given by

ρ(x) = ρ0 exp
[
−x2(1− r/h)

]
fort x ≤ y, (183)

ρ(x) = ρ0 exp[−(x− r)2] exp[−r(y − r)] for x > y, (184)

where ρ0 is the density at the central plane, ρ0 = m0/(yHg). The initial esti-
mate of the gas pressure is then obtained using the sound speed for the char-
acteristic temperature, Pg(m) = c2gρ(m). Finally, the initial estimate of the
vertical distance from the central plane is obtained by solving the z-m relation,
dz = −dm/ρ.
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2. Initial estimate of the temperature.
The procedure differs depending on whether or not the Compton scattering

is taken into account.
Without Compton scattering: The temperature as a function of the Rosse-

land optical depth is given by a modification of the T (τ) relation for stellar
atmospheres (Hubeny 1990), which in a simplified form that assumes the Ed-
dington approximation reads

T 4 =
3

4
T 4

eff

[
τ

(
1− τ

τtot

)
+

1√
3

+
1

3ετtot

w

w̄

]
, (185)

where τ is the Rosseland optical depth, τtot is the τ at the central plane, and
ε = κB/κ, that is the ratio of the Planck-mean to the Rosseland mean opacity.
In a strict gray model, ε = 1. If the total optical thickness of the disk is large,
τtot � 1, the last term in Eq. (185) is small.

With Compton scattering: The formalism is taken from Hubeny et al. (2001;
their Eqs. (42-44). The local temperature is given by the solution of a fourth-
order algebraic equation

ε̄

(
T

Teff

)4

=
3

4

[
τ

(
1− τ

2τtot

)
+

1√
3

]
(ε̄− 2.867× 10−11T ) +

1

4τtot

w

w̄
, (186)

where

ε̄ =
κB
neσT

≡
∫∞

0
κνBνdν∫∞

0
Bνdν

1

neσT
. (187)

Equation (186) is solved by a Newton-Raphson method.

For each depth, starting with d = 1, the following iteration loop is performed:
(a) first the increment of the Rosseland mean opacity is estimated (taken equal
to the increment at the previous depth d − 1; the initial values at d = 1 are
given by the input values); then the optical depth corresponding to depth d is
determined.
(b) The temperature from Eq. (185) or (186) is calculated.
(c) Given the current values of T and Pg, one performs a Pg → κ procedure
(that is, a part of the P → κ without its first step because we started already
with the gas pressure).
(d) With the new value of κ one computes an updated optical depth τ and
returns to step (b).
The loop (b)− (d) is repeated several times until the relative changes of Td are
sufficiently small.

3. Refinement of pressure, density, and vertical distance.
The values of the structural parameters are improved by a simultaneous

solution of the hydrostatic equilibrium equation and the z-m relation. It turned
out that a numerically more stable form of the hydrostatic equation is obtained
by differentiating its original form, dP/dm = Qz once more over m and using
the exact expression dz/dm = −1/ρ, to obtain a second-order equation for P ,

d2P

dm2
= −Q

ρ
= − Q

c2sP
, (188)
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where the total sound speed cS = (P old/ρold)1/2 is taken as a known function of
depth. The upper boundary condition is derived assuming that the temperature
is constant for m < m1, and integrating the hydrostatic equilibrium equation
form depth m1 upward. One obtains (Hubeny 1990)

m1 = Hgρ(z1)f

(
z −Hr

Hg

)
, (189)

where
f(x) ≡ (

√
π/2) exp(x2) erfc(x). (190)

Here, Hg, Hr and cS are evaluated using the current values of the state param-
eters at d = 1.

4. Changing the structure in the convection zone.
The procedure for changing temperature, and consequently the other state

parameters, in the regions where the material is unstable against convection, is
exactly the same as in the case of stellar atmospheres.

5 Conclusion

This document, which forms Part II of the three-paper series of a detailed user’s
guide for tlusty and synspec, contains an overview of physical assumptions,
basic structural equations, and the description of the numerical methods to solve
them. This paper thus provides a theoretical background for the next paper,
which will provide a practical guide for working with tlusty. It will cover
computational issues, namely a description of the input data and output files,
a selection of appropriate options to fine-tune physical and numerical setup of
the model construction, and basic troubleshooting.
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Appendix A: Details of the formal solution of the
transfer equation

As mentioned above, tlusty allows for several possibilities to perform a formal
solution of the transfer equation. We recall that by the term formal solution
we understand a solution with the thermal source function fully specified. If
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the source function contains a scattering term, which is essentially always the
case, this term is not assumed as given; instead it is treated self-consistently.
The total number of depth points is ND; depth index d attains values between
1 (representing the uppermost point) and d = ND, representing the deepest
point in the atmosphere. The angle points are labelled i = 1, . . . , NA, with NA
being the total number of angle points; their order is arbitrary.

We consider here the case where the transfer equation does not contain
any coupling of the individual frequency points, and therefore it can be solved
frequency by frequency. We thus skip an indication of the frequency dependence
of the corresponding quantities, as well as the indices of discretized frequency
points.

A1. Feautrier scheme

This is the standard method to solve the transfer equation with the known
thermal source function. Here we also assume that the source function does not
depend on angle.

The angle-dependent transfer equation is discretized as follows:

• for inner depth points, d = 2, . . . , ND − 1,

µ2
i jd−1,i

∆τd−1/2∆τd
− µ2

i jdi
∆τd

(
1

∆τd−1/2
+

1

∆τd+1/2

)
+

µ2
i jd+1,i

∆τd+1/2∆τd
= jdi − Sd, (191)

where

∆τd ≡
1

2
(∆τd−1/2 + ∆τd+1/2), (192)

The total source function is given by

Sd =
σd
χd

NA∑
j=1

wdjjdj +
ηd
χd
. (193)

• upper boundary condition, in the second-order form, is given by

µl
j2i − j1i
∆τ3/2

= j1i − Iext
i +

∆τ3/2

2µi
(j1i − S1l) (194)

• For the lower boundary, d = ND, there are two possible forms, one for stellar
atmospheres, with diffusion approximation, and one for accretion disks, with
symmetry boundary condition, dj/dτ |ND = 0. Both are considered in the
second-order form.

– For stellar atmospheres

µi
jdi − jd−1,i

∆τd−1/2
= I+

i − jdi −
∆τd−1/2

2µi
(jdi − Sd), (195)

where

I+
i = BND + µi

BND −BND−1

∆τND−1/2
. (196)
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– For accretion disks

µi
jdi − jd−1,i

∆τd−1/2
= −

∆τd−1/2

2µi
(jdi − Sd), (197)

One introduces a column vector jd ≡ {jd1, jd2, . . . , jd,NA}T , and the set of
equations (191), (193) - (196) is expressed as a block tridiagonal system of the
form

−Ad jd−1 + Bd jd −Cd jd+1 = Rd (d = 1, . . . , ND). (198)

Ad, Bd, and Cd are (NA×NA) matrices. Ad and Cd are diagonal, containing
the finite–difference terms in (191) that couple the angle–frequency components
of jdi at depth point d to those at depth points d− 1 and d+ 1 respectively. Rd

is a column vector of length NA, containing the thermal (i.e. non–scattering)
source terms in (193).

At an interior point (d = 2, . . . , ND − 1), (i, j = 1, . . . , NA),

(Ad)ij = µ2
i /(∆τd−1/2 ∆τd) δij , (199)

(Cd)ij = µ2
i /(∆τd+1/2 ∆τd) δij , (200)

(Bd)ij = δij + (Ad)ij + (Cd)ij − (σd/χd)wj , (201)

(Rd)i = ηd/χd. (202)

Here δij is the Kronecker symbol.
At the upper boundary, d = 1, one has (A1)ij ≡ 0, and

(Bd)ij = [1 + (2µi/∆τd+1/2) + 2(µi/∆τd+1/2)2] δij − (σd/χd)wj , (203)

(Cd)ij = 2(µi/∆τd+1/2)2 δij , (204)

and
Rdi = ηd/χd + (2µi/∆τd+1/2)Iext

i . (205)

For the lower boundary, d = ND, one has (CND)ij = 0, and
– for stellar atmospheres

(Bd)ij = [1 + (2µi/∆τd−1/2) + 2(µi/∆τd−1/2)2]δij − (σd/χd)wj , (206)

(Ad)ij = 2(µi/∆τd−1/2)2 δij , (207)

(Rd)i = σd/χd − (2µi/∆τd−1/2)I+
d,i. (208)

– for accretion disks

(Bd)ij = [1 + 2(µi/∆τd−1/2)2] δij − (σd/χd)wj , (209)

(Ad)ij = 2(µi/∆τd−1/2)2 δij , (210)

and
(Rd)i = σd/χd, (211)
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Equation (198) is solved by a standard Gauss-Jordan elimination that con-
sists of a forward elimination, analogously to that employed for complete lin-
earization, Eqs, (123) - (125),

D1 = B−1
1 C1, and Dd = (Bd −AdDd−1)−1Cd, d = 2, . . . , ND, (212)

and

Z1 = B−1
1 L1, and Zd = (Bd −AdDd−1)−1(Ld + AdZd−1), d = 2, . . . , N.

(213)
followed by a back-substitution

δψND = ZND, and δψd = Ddδψd+1 + Zd, d = ND − 1, . . . , 1. (214)

Scalar Feautrier scheme

Once the solution for j is obtained by the procedure described by Eqs. (212) -
(214), the mean intensity and the Eddington factors are computed using (156).
This procedure may be sufficient. However, for the overall consistency, the
transfer equation needs to be solved again, now for the mean intensity using
the newly determined Eddington factors. The reason for this is that such an
equation is being considered as one of the structural equations. Although its so-
lution for the mean intensity is mathematically equivalent to the corresponding
integral of the solution of the angle-dependent transfer equation, these solutions
are slightly different numerically due to rounding errors, and due to inaccura-
cies in numerical integration over angles. One should therefore enter the next
linearization step with a current solution of the same equation that is linearized;
otherwise the global iteration process would stop converging at small but non-
zero relative changes.

The discretized combined moment equation is written as follows:
• For inner depth points, d = 2, . . . , ND − 1, one has

fd−1Jd−1

∆τd−1/2∆τd
− fdJd

∆τd

(
1

∆τd−1/2
+

1

∆τd+1/2

)
+

fd+1Jd+1

∆τd+1/2∆τd
= Jd − Sd. (215)

The right–hand side of equation (215) can be written as

Jd − Sd = εdJd −
ηd
χd
, (216)

with
εd ≡ 1− σd/χd = κd/χd. (217)

• The upper boundary condition (d = 1), in the second–order form that follows
from integrating equation (194) over angles, is

fd+1Jd+1 − fdJd
∆τd+1/2

= gJd −Hext +
∆τd+1/2

2

(
εdJd −

ηd
χd

)
. (218)
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• The lower boundary condition (d = ND) is again different for semi-infinite
atmospheres and for accretion disks.

– For stellar atmospheres, assuming the diffusion approximation,

fsJs − fd−1Jd−1

∆τd−1/2
=

1

2
(Bd − Jd) +

Bd − Bd−1

3 ∆τd−1/2
−

∆τd−1/2

2

(
εdJd −

ηd
χd

)
, (219)

where B denotes the Planck function.
– For accretion disks, one also employs a second-order form in which one

uses the symmetry condition (dj/dτ)ND = 0,

2

∆τd−1/2

fdJd − fd−1Jd−1

∆τd−1/2
+ εd =

ηd
χd
. (220)

Equations (215), (218), and (219) also form a tridiagonal system

−AdJd−1 +BdJd − CdJd+1 = Rd, (221)

where now Ad, Bd, and Cd are scalars (real numbers). They are given by

Ad =

{
0, for d = 1,

fd−1/[∆τd−1/2∆τd], for d ≥ 2,
(222)

Bd =


(fd/∆τd+1/2) + g + ε∆τd+1/2/2, d = 1,

(fd/∆τd)
[
∆τ−1

d−1/2 + ∆τ−1
d+1/2

]
+ ε, d = 2, . . . , ND − 1,

(fd/∆τd−1/2) + (1/2) + ε∆τd−1/2/2, d = ND,

(223)

Cd =

{
fd+1/[∆τd+1/2∆τd], d < ND,

0 d = ND,
(224)

and

Rd =


Hext + (∆τd+1/2/2)(ηd/χd), d = 1,

(ηd/χd), d = 2, . . . , ND − 1,

X+ − ε∆τd−1/2/2, d = ND,

(225)

where
X+ = BND/2 + (BND − BND−1)/(3∆τND−1/2) (226)

Equation (221) is solved analogously as described above.

A2. Fourth-order Hermitian scheme

This efficient and very accurate modification of the standard Feautrier scheme
was suggested by Auer (1976). The finite difference scheme originally expressed
by Eq. (191) is replaced by

−Ad jd−1 +Bd jd − Cd jd+1 + αd j
′′
d−1 + βd j

′′
d + γd j

′′
d+1 = 0, (227)
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where j′′d ≡ µ2 d2j/dτ2|d = jd − Sd. Expanding jd±1 and j′′d±1 to fourth or-
der Taylor series, one obtains after some algebra (see Auer 1967; or Hubeny
& Mihalas 2014, $ 12.4) a block-tridiagonal system analogous to the standard
Feautrier scheme, Eq. (198), where now

(Ad)ij = (adi − αdi)δij + αdi (σd−1/χd−1)wj , (228)

(Cd)ij = (cdi − γdi)δij + γdi(σd+1/χd+1)wj , (229)

(Bd)ij = (bdi + βdi)δij − βdi(σd/χd)wj , (230)

and
Rdi = αdi(ηd−1/χd−1) + βdi(ηd/χd) + γdi(ηd+1/χd+1), (231)

where the individual auxiliary quantities are given by

adi = µ2
i /(∆τd∆τd−1/2), (232)

cdi = µ2
i /(∆τd∆τd+1/2), (233)

bdi = adi + cdi, (234)

αdi = [1− adi∆τ2
d+1/2/(2µ

2
i )]/6, (235)

γdi = [1− cdi∆τ2
d−1/2/(2µ

2
i )]/6, (236)

βdi = 1− αdi − γdi, (237)

Although one can construct a third-order form for the boundary condition, the
usual second-order form expressed by Eqs. (203) - (211) is satisfactory, and is
being used in tlusty.

A3. Improved Rybicki-Hummer solution algorithm

In this variant of the Feautrier scheme, the basic expressions Eq. (191) - (197)
remain unchanged, the only point which is changed is the method of the so-
lution of the resulting tri-diagonal system (198). It can obviously be used in
conjunction with the 4-th order Hermitian scheme as well.

This scheme has better numerical properties if ∆τ � 1, which may easily
happen near the surface. In this case, the terms proportional to ∆τ−2 are
very large, which cause the other terms (”1” from the Kronecker δ, and the
term corresponding to scattering source function term), may be lost because
of a limited numerical representation, or be inaccurate due to numerical noise.
In this case, one changes the original algorithm by introducing an auxiliary
quantity

Hd = −Ad +Bd − Cd, (238)

(with A1 = CND = 0), and
Fd = D−1

d − 1. (239)
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and the solution algorithm, originally described by Eqs. (123) - (125), proceeds
now as follows

Fd = C−1
d {Hd +Ad · [1− (1 + Fd−1)−1]}, (240)

Ed = (1 + Fd)
−1C−1

d (Rd +AdEd−1), (241)

The reverse sweep starts with jND = END, followed by for d=ND − 1, . . . ,1,

jd = (1 + Fd)
−1jd+1 + Ed. (242)

This formalism applies both for the block-tridiagonal systems of equations (198),
in which case A, B, C, H, D, F , and E are matrixes, as well as by Eq. (221),
in which case they are scalars.

A4. Discontinuous Finite Elements

If an atmospheric structure exhibits very sharp variations with depth, it is
advantageous to use the Discontinuous Finite Element (DFE) scheme by Castor
et al. (1992). It solves the linear transfer equation

dIν
dτ̃ν

= Iν − Sν , (243)

where τ̃ν ≡ τν/|µ| is the optical depth along the line of propagation of radiation.
Equation (243) is solved directly for the specific intensity, and therefore the
scattering part of the source function has to be treated iteratively. To this end,
a simple ALI-based procedure is used. It is outlined below. Here we describe
the method assuming that the total source function is fully specified.

The method is essentially an application of the Galerkin method. An idea is
to divide a medium into a set of cells, and to represent the source function within
a cell by a simple polynomial, in this case by a linear segment. The crucial point
is that the segments are assumed to have step discontinuities at grid points. The
specific intensity at grid point d is thus characterized by two values I+

d and I−d
appropriate for cells (τ̃d, τ̃d+1) and (τ̃d−1, τ̃d), respectively. Notice that we are
dealing with an intensity in a given direction; the superscripts “+” and “−”
thus do not denote intensities in opposite directions as it is usually used in the
radiative transfer theory. The actual value of the specific intensity I(τ̃d) is given
as an appropriate linear combination of I+

d and I−d . We skip all details here;
suffice to say that after some algebra one obtains simple recurrence relations for
I+
d and I−d , for d = 1, . . . , ND − 1,

adI
−
d+1 = 2I−d + ∆τ̃d+1/2Sd + bdSd+1, (244)

adI
+
d = 2(∆τ̃d+1/2 + 1) I−d + bdSd −∆τ̃d+1/2Sd+1, (245)

where
ad = ∆τ̃2

d+1/2 + 2∆τ̃d+1/2 + 2, (246)

bd = ∆τ̃d+1/2(∆τ̃d+1/2 + 1), (247)
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and
∆τ̃d+1/2 = τ̃d+1 − τ̃d, (248)

The boundary condition is I−1 = Iext, where Iext is the specific intensity of
external irradiation (for inward-directed rays, µ < 0).

For outward-directed rays (µ > 0), one can either use the same expressions as
above, renumbering the depth points such asND → 1, ND−1→ 2, . . . , 1→ ND;
or use the same numbering of depth points while setting the recursion, for
d = ND − 1, . . . , 1, as

adI
−
d = 2I−d+1 + ∆τ̃d+1/2Sd+1 + bdSd, (249)

adI
+
d+1 = 2(∆τ̃d+1/2 + 1) I−d+1 + bdSd+1 −∆τ̃d+1/2Sd, (250)

with I−d = Bd +µ(Bd−Bd−1)/∆τ̃d−1/2, i.e., assuming the diffusion approxima-
tion, for d = ND.

Finally, the resulting specific intensity at τ̃d is given by a linear combination
of the “discontinuous” intensities I−d and I+

d as

Id =
I−d ∆τ̃d+1/2 + I+

d ∆τ̃d−1/2

∆τ̃d+1/2 + ∆τ̃d−1/2
. (251)

At the boundary points, d = 1 and d = ND, we set Id = I−d . As was shown by
Castor et al. (1992), it is exactly the linear combination of the discontinuous
intensities expressed in Eq. (251) which makes the method second-order accu-
rate. Since one does not need to evaluate any exponentials, the method is also
very fast.

We stress again that the above scheme applies for a solution of the transfer
equation along a single line of sight; that is, for a single angle of propagation.
The source function is assumed to be given. Therefore, when scattering is not
negligible, one has to iterate on the source function. This is done using an
application of the Accelerated Lambda Iteration (ALI) method.

Here is an algorithm to use the ALI scheme in this context, assuming a
diagonal Λ∗ operator. For more details refer to Hubeny & Mihalas (2014, § 13.5):

(i) For a given Sold (with an initial estimate Sold = B or some other suitable
value), perform a formal solution of the transfer equation, one frequency
and direction (given µ) at a time. This yields a new value of the specific
intensity Iµ and also the values of the Λ∗µ, angle-dependent approximate
operator – see below.

(ii) By integrating over directions using

JFS =
1

2

∫ 1

−1

dµΛµ[Sold] (252)

obtain new values of the formal-solution mean intensity JFS. Here, the
action of the Λ operator simply means obtaining the specific intensity by
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solving the transfer equation using the old source function. Analogously,
compute the angle-integrated Λ̄∗ as

Λ̄∗ =
1

2

∫ 1

−1

dµΛ∗µ, (253)

(iii) Evaluate a new iterate of the mean intensity as Jnew = Jold + δJ , where

δJ =
JFS − Jold

1− (1− ε)Λ̄∗
. (254)

(iv) If the mean intensity found in step (iii) differs from that used in step
(i), update the source function from (193) using the newly found mean
intensity and repeat steps (i) to (iii) to convergence.

A5. Construction of the approximate Λ∗ operator

As mentioned above, one has to construct the approximate Λ∗ operator in the
formal solution of the transfer equation. This operator is then held fixed during
the subsequent step of the linearization procedure.

As explained in Hubeny & Mihalas (2014; § 13.3), the matrix elements of the
Λ operator can be evaluated by setting the source function to be the unit pulse
function, S(τd) = δ(τ − τd), so that

Λdd′ = Λτd [δ(τd′ − τ)], (255)

In practice, one does not have to solve the full transfer equation, but only to
collect coefficients that stand at Sd in the expressions to evaluate Id. The actual
evaluation depends on the type of the formal solver of the transfer equation

Using the Feautrier scheme

The procedure, following Rybicki & Hummer (1991), is as follows. Let T be an
N ×N tridiagonal matrix and let its inverse be Λ ≡ T−1. The equation for the
inverse can be written as T ·Λ = 1, or, in component form

−Aiλi−1,j +Biλij − Ciλi+1,j = δij . (256)

For any fixed value of j this equation can be solved by one of the forms of
Gaussian elimination. In the usual implementation the elimination proceeds
from i = 1 to i = N , followed by back–substitution from i = N to i = 1,

Di = (Bi −AiDi−1)−1Ci, (257)

Zij = (Bi −AiDi−1)−1(δij +AiZi−1,j), (258)

and
λij = Diλi+1,j + Zij . (259)
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It is also possible to implement the method in reverse order,

Ei = (Bi − CiEi+1)−1Ai, (260)

Wij = (Bi − CiEi+1)−1(δij + CiWi+1,j), (261)

and
λij = Eiλi−1,j +Wij . (262)

The crucial idea of the method is to use parts of both of these implementations
to find the diagonal elements λii.

Since δij = 0 for i 6= j, it follows from (258) and (261) that Zij = 0 for
i < j, and Wij = 0 for i > j. Thus, from (258) and (259) we obtain, for special
choices of i and j,

Zii = (Bi −AiDi−1)−1, (263)

λii = Diλi+1,i + Zii, (264)

λi−1,i = Di−1λii, (265)

and, from (261) and (262)

Wii = (Bi − CiEi+1)−1, (266)

λii = Eiλi−1,i +Wii, (267)

and
λi+1,i = Ei+1λii. (268)

Using (263), (264), and (268) we eliminate Zii and λi+1,i to obtain

λii = (1−DiEi+1)−1(Bi −AiDi−1)−1. (269)

The right hand side now depends only on the single–indexed quantities Ai and
Bi, which are given, and Di and Ei which can be found by two passes through
the depth grid, using the recursion relations (257) and (260). Thus λii can be
found in order N operations.

An evaluation of the approximate operator requires only little extra work
in the formal solution. The quantities Ai, Bi, Ci, and Di are common to both
problems, and one needs only to include the recursion relation (260) as part of
the back–substitution to find the auxiliary quantities Ei.

Using the Discontinuous Finite element method

When using the DFE scheme for the formal solution of the transfer equation,
one proceeds along the recurrence relations (244) and (245) to compute

L−d+1 = bd/ad, (270)

L+
d = [2(∆τ̃d+1/2 + 1)L−d + bd]/ad (271)
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where ad and bd are given by (246) and (247). The complete diagonal element
of the (angle-dependent) elementary operator is obtained, in parallel with Eq.
(251), as

Λ∗d(µ, φ) ≡ Λdd =
L−d ∆τ̃d+1/2 + L+

d ∆τ̃d−1/2

∆τ̃d+1/2 + ∆τ̃d−1/2
. (272)

The values at the boundaries are Λdd = 0 for d = 1, and Λdd = L−d for d = ND.
The evaluation of the diagonal elements for outward-directed rays is analogous,

L−d = bd/ad, (273)

L+
d+1 = [2(∆τ̃d+1/2 + 1)L−d+1 + bd]/ad (274)

As stressed above, the solution of the transfer equation using the DFE
method is performed for one direction at a time, so L and Λ in Eqs. (270)
- (272) are also specified for given µ and φ. The total approximate operator
needed to evaluate the new iterate of the source function or the mean intensity
is given by

Λ̄∗d =
1

4π

∫ 2π

0

dφ

∫ 1

−1

dµΛ∗d(µ, φ). (275)

A6. Compton scattering

The basic complication in the formal solution is that one can no longer solve
the transfer equation frequency by frequency independently, as it is done in
the standard treatment, but the coupling of frequencies expressed by Eq. (93)
has to be taken into account. Although one can devise an ALI-based method
that would be efficient and universal, this is not yet done in tlusty, where one
resorts to the direct scheme.

Such a scheme was developed by Hubeny et al. (2001); here we point out
only the basic features. The angle-averaged Compton scattering source function
is given by

SCompt
ν = (1− x)Jν + (x− 3Θ)J ′ν + ΘJ ′′ν +

c2

2hν3
Jν2x(J ′ν − Jν), (276)

where

x =
hν

mec2
, Θ =

kT

mec2
, (277)

The second-order form of the radiative transfer equation, discretized in fre-
quency, is written for the i-th frequency point as [see Hubeny et al. (2001), eq.
(A51)],

∂2(fiJi)

∂τ2
i

= Ji − εiSth
i − (AiJi−1 + BiJi + CiJi+1) + Ji(UiJi−1 + EiJi + ViJi+1),

(278)
where εi = κth

i /(κ
th
i + σi), λi = 1 − εi. Here, and in the following, we skip the

depth index d.
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Since Eq. (278) represents a discretized version of a partial differential equa-
tion in depth and frequency, one need to invoke specific initial conditions of the
lowest and highest frequency.

We will first consider the internal frequency points, νi, 2 ≤ i ≤ NF − 1. The
coefficients A,B, C, E ,U ,V are expressed by two possible ways. The original
approach is that developed in Hubeny et al. (2001), viz.

Ai = λi[(xi − 3Θ)c−i + Θd−i ], (279)

Bi = λi[(1− xi) + (xi − 3Θ)c0i + Θd0
i ], (280)

Ci = λi[(xi − 3Θ)c+i + Θd+
i ], (281)

Ei = λi[(2hν
3
i /c

2)2xi(c
0
i − 1)], (282)

Ui = λi(2hν
3
i /c

2)2xic
−
i , (283)

Vi = λi(2hν
3
i /c

2)2xic
+
i . (284)

There is another, preferable approach, based on the formalism of Chang &
Cooper (1970), where,

Ai = λi[−δi−1yi−1 + Θd−i ], (285)

Bi = λi[δiyi+1 + (1− δi−1)yi−1 + Θd0
i − εi + 1, (286)

Ci = λi[(1− δi)yi+1 + Θd+
i ], (287)

Ei = Ui = Vi = 0, (288)

where

yi = [(1− δi)zi+1 + δizi]∆0, (289)

zi = xi[1 + Jic
2/(2hν3

i )]− 3Θ. (290)

In Eq. (290) , one takes for Ji the current, and thus known, specific intensity.
This avoids a non-linearity of the transfer equation that would arise due to
stimulated emission.

In both cases, the coefficients c0i , c
−
i , and c+i come from discretizing the first

derivative terms in Eq. (276),

c+i = (1− δi)/∆i, c−i = −δi−1/∆i, (291)

c0i = −c+i − c
−
i , (292)

where

∆i−1/2 = ln(νi/νi−1), ∆i+1/2 = ln(νi+1/νi), (293)

∆i = ∆i−1/2 + ∆i+1/2. (294)

The coefficients δi are determined by solving a quadratic equation

a δ2
i + b δi + c = 0, (295)
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where the coefficients a, b, c are given by, using the original approach (Hubeny
et al. 2011) as

a = ∆Bi δβi, (296)

b = ∆Bi (1 + βi+1 − 3/ξ̄) +Bi+1 δβi, (297)

c = Bi+1(1 + βi+1 − 3/ξ̄)−∆Bi/[ξ̄ ln(νi+1/νi)], (298)

where ξ̄ = (h/kT )(νiνi+1)1/2; or, using the Chang & Cooper (1970) approach,
as

a = ∆Bi δzi, (299)

b = ∆Bi zi+1 +Bi+1 δzi, (300)

c = Bi+1zi+1 −Θ ∆Bi/∆i (301)

where, in both cases,

zi = xi(1 + βi)− 3Θ, ∆zi = zi − zi+1, (302)

βi = [exp(hνi/kT )− 1]−1, (303)

Bi = (2hν3
i /c

2)βi, ∆Bi = Bi −Bi+1. (304)

In both cases, one picks the solution of (295) which satisfies 0 ≤ δi ≤ 1/2.
The analogous coefficients di come from the second derivative terms.

d−i = 2(∆i−1/2∆i)
−1, d+

i = 2(∆i+1/2∆i)
−1, (305)

d0
i = −d+

i − d
−
i . (306)

The non-linear terms in Eq. (276), corresponding to the stimulated emission,
are linearized by using the “old” intensities, replacing Bi by B′i, where

B′i = Bi + UiJold
i−1 + EiJold

i + ViJold
i+1. (307)

In the case of the Chang & Cooper approach, the stimulated emission terms
were already included, as is seen in Eq. (290), so B′i = Bi.

The initial condition for the lowest frequency, i = 1, which is assumed to be
very low, is simply

Bi = 1− 2xi, (308)

and all the other coefficients Ai = Ci = Ei = Ui = Vi = 0.
The initial condition for the highest frequency, i = NF , is more complicated.

In the original approach after Hubeny et al. (2001) one has

Ai = −ξ0/ ln(νi/νi−1) + (1− δi−1)ξ1, (309)

Bi = ξ0/ ln(νi/νi−1) + δi−1ξ1, (310)

where

ξ0 = kT/[h(νiνi−1)1/2], (311)

ξ1 = 1− 3ξ0 + (1− δi−1)e−hνi/kT + δi−1e
−hνi−1/kT , (312)
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In the case of Chang & Cooper approach, one has

Ai = −Θ/δi−1 + (1− δi−1)ζ0, (313)

Bi = Θ/δi−1 + δi−1ζ0, (314)

where

ζ0 = (1− δi−1)ζi + δi−1ζi−1, (315)

ζi = xi

(
1 + e−hνi/kT

)
− 3Θ. (316)

The left-hand side of Eq. (278) is discretized as in the ordinary transfer
problem, so that the final algebraic equation for the mean intensities reads

−αidJi,d−1−γidJi,d+1+(βid+1−B′id)Jid−AidJi−1,d−CidJi+1,d = εidS
th
id . (317)

One can use equation (317) in two different ways, called in vague analogy with
the hydrodynamical terminology as explicit or implicit.

(i) The implicit way consists of solving Eq. (317) with the full coupling
taken into account; that is, all the mean intensities, including those in frequency
points i − 1 and i + 1, are solved for. This approach is more stable, but it
involves a more time-consuming solution of the coupled problem. It is solved
by a standard scheme. One introduces a column vector Ji ≡ (Ji1, Ji2, . . . , JiD),
where D ≡ ND being the number of depth points, and write Eq. (317) as a
linear matrix equation

−AiJi−1 + BiJi −CiJi+1 = Li, (318)

where the elements of the matrices are given by the corresponding coefficients
Aid, B′id, Cid, αid, βid, and γid, and vector (Li) = εidS

th
id . Matrices B are tridiag-

onal (because of a difference representation of the second derivative with respect
to depth), and matrices A and C are diagonal (because the terms containing
the frequency derivatives are local). Equation (318) is solved by a standard
Gauss-Jordan elimination.

(ii) The explicit way consists of avoiding the frequency coupling by consid-
ering the radiation intensity in the last three terms on the l.h.s. of Eq. (317),
corresponding to frequency derivatives, being given by the “old” values of the
specific intensity. In practice, Eq. (317) can be simplified to the ordinary form,

−αidJi,d−1 − γidJi,d+1 + (βid + 1− B̃id)Jid = εidS
th
id . (319)

where
B̃id = B′id +AidJold

i−1,d + CidJold
i+1,d. (320)

The numerical solution of this problem is analogous to the solution of the stan-
dard problem without Compton scattering; the only difference being that dif-
ferent coefficients enter in the linear equation. Obviously, the explicit solution
can be performed frequency by frequency.
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It should be kept in mind that regardless whether the implicit or explicit way
is used, one still has to iterate to update (i) coefficient B′id that describes the
stimulated emission and which depends on the radiation intensity, and (ii) the
Eddington factor. If one uses an explicit method, one has to introduce another
nested iteration loop to update coefficient B̃id that accounts for the frequency
derivatives, and also depends on radiation intensities.

To update the Eddington factor, one has to solve an angle-dependent transfer
equation for the specific intensity. To this end, we use the explicit form of the
scattering term. As in the standard case, one takes the source function as angle-
independent (that is, angle averaged), but unlike the standard case it is taken
as known, without an explicit integration of the specific intensity over angle.
Therefore, one solves the transfer equation for one frequency-angle point at a
time, viz.

µj
dIij
dτi

= Iij − εiSth
I − B̃iJold

i , (321)

where Iij is the specific intensity at frequency point i and discretized angle point
j; µj is the cosine of the polar angle. One can employ equation (321) as is, when
using the DFE method for the formal solver, or use the second-order (Feautrier)
form,

µ2
j

d2jij
dτ2
i

= jij − εiSth
I − B̃iJold

i , (322)

where jij ≡ [Ii(µj) + Ii(−µj)]/2 is the symmetrized (Feautrier) intensity.

Appendix B. Details of the global formal solution

B1. Preconditioned kinetic equilibrium equations

As mentioned in § 3.8.2, the crucial part of the global formal solution, i.e., the
bulk of calculations performed between the two successive iterations of the lin-
earization scheme, is the simultaneous solution of the radiative transfer and
kinetic equilibrium equations, keeping the current atmospheric structure (tem-
perature, density) fixed—the so-called “restricted NLTE problem”.

As mentioned above, one can use a simple Lambda iteration scheme, that
is to perform an iterative solution that alternates between solving the trans-
fer equation for the current values of level populations, and solving the kinetic
equilibrium equations with the current values of radiation intensities. However,
there is a much better scheme that is based on the ALI scheme with precondi-
tioning of the kinetic equilibrium, first suggested by Rybicki & Hummer (1991,
1992). We follow here a slightly modified formalism, presented in Hubeny &
Mihalas (2014, §14.5).

We use a variant of the scheme, called “preconditioning within the same
transition only”, in which the discretized kinetic equilibrium equations, with
corresponding quadrature weights, denoted in the section as wi to avoid confu-
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sion with occupation probabilities, are written as∑
l

nlClu +
∑
l

∑
i

wi
4π

hνi

(
nlUlu + nlVluΛi[η

old
i /χold

i ]

− nlVluΛ∗i [n
old
u Uul/χ

old
i ]− nlVluΛ∗i [n

old
l Ulu/χ

old
i ]

+ nold
l VluΛ∗i [nuUul/χ

old
i ] + nold

l VluΛ∗i [nlUlu/χ
old
i ]
)

=
∑
l

nuCul +
∑
l

∑
i

wi
4π

hνi

(
nuUul + nuVulΛi[η

old
i /χold

i ]

− nuVulΛ
∗
i [n

old
l Ulu/χ

old
i ]− nuVulΛ∗i [nold

u Uul/χ
old
i ]

+ nold
u VulΛ

∗
ν [nlUlu/χ

old
i ] + nold

u VulΛ
∗
i [nuUul/χ

old
i ]
)
, (323)

where for bound-bound transitions (generalizing the Rybicki & Hummer expres-
sions to include the occupation probabilities wl and wu),

Uul(ν) ≡ (hν/4π)Aulφlu(ν)wl, u > l, (324)

Ulu(ν) ≡ 0, u > l, (325)

Vlu(ν) ≡ (hν/4π)Bluφlu(ν)wu, (326)

and for bound-free transitions, and for u > l,

Uul(ν) ≡ neΦul(T )(2hν3/c2) exp(−hν/kT )σlu(ν)wl, (327)

Ulu(ν) ≡ 0, (328)

Vul(ν) ≡ neΦul(T ) exp(−hν/kT )σlu(ν)wl, (329)

Vlu(ν) ≡ σlu(ν)wu, (330)

Equations (323) form a linear set for the level populations nu, u = 2, . . . , NL.
The linearity is achieved by considering some level populations in the bi-linear
products as the “old” populations. Similarly, the total opacity χi that enters in
the action of the Λ∗ operator, is evaluated using the old populations.

Recognizing that Λ∗i [η
old
i /χold

i ] = Jold
i , and noting that for a diagonal Λ∗

operator the terms −nlVluΛ∗i [n
old
l Ulu/χ

old
i ] and nold

l VluΛ∗i [nlUlu/χ
old
i ] exactly

cancel out (and analogously for the term with nun
old
u ), we can rewrite Eq. (323)

into a more traditional form,∑
l 6=u

nl(Clu +R′lu) = nu
∑
l 6=u

(Cul +R′ul), (331)

where, for l < u

R′lu =
∑
i

wiσlu(νi)J
′
iwu, (332)

R′ul =
∑
i

wiσlu(νi) (Ji + β′i) Glu, (333)
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which are quite parallel to the original equations (65) and (66), replacing J by
J ′ and β = (2hν3/c2) by β′, where

J ′i = Ji − Λ∗in
old
u Uul/χ

old
i , (334)

β′i = (2hν3
i /c

2)[1− Λ∗in
old
l σlu(νi)wu/χ

old
i ]. (335)

One proceeds in exactly the same way as in the ordinary Lambda iteration.
The iteration loop consists in solving the transfer equation with the current
populations to obtain a better estimate of the mean intensities, and then solv-
ing the system (323) or (331) with these mean intensities to obtain the “new”
populations ni. Unlike the ordinary Lambda iteration, the modified radiative
rates contain not only the current mean intensities of radiation, but also the
approximate operator Λ∗ and the “old” populations, known from the previous
iteration. The iteration process may be augmented by an application of the Ng
acceleration.

Usually, one does not perform many iterations because the aim of the proce-
dure is only to provide an improved and more consistent values of mean inten-
sities and level populations before entering the next step of the global iteration
process. But if the procedure is used, for instance, to obtain an exact solution
for the radiation field and level populations for a fixed atmospheric structure,
then one should perform more iterations of the preconditioning scheme together
with Ng acceleration.

The iteration scheme to obtain new populations and mean intensities of ra-
diation, being a classical Lambda iterations or a preconditioning scheme with
ALI, is usually supplemented by a simultaneous solution of the charge conser-
vation equation. This is done iteratively; one simply alternates between the
solution of the (preconditioned) kinetic equilibrium equations, e.g., Eq. (331),
for new populations with a given electron density, and the solution of the charge
conservation equation (80) for a new electron density with given populations.

B2. Temperature correction in the convection zone

If the convection is taken into account, the logarithmic gradient ∇, in a dis-
cretized form, is given either by

∇d ≡ ∇d−1/2 =
Td − Td−1

Pd − Pd−1

Pd + Pd−1

Td + Td−1
. (336)

or by
∇d = ln(Td/Td−1)/ ln(Pd/Pd−1). (337)

The energy balance equation is linearized as described in detail in Appendix D1;
see also Hubeny & Mihalas (2014, § 18.2). Although the linearization scheme
may in principle converge without additional correction procedures, in practice
it is a very rare situation. The essential point is that a linearization iteration
may yield the actual values of temperature and other state parameters such
that, for instance, the actual logarithmic gradient in a former convection zone
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may spuriously decrease below the adiabatic gradient at certain depth points,
so that these points would be declared as convectively stable and the radiative
flux would be demanded to be equal to the total flux, which would lead to a
serious destabilization of the overall scheme, likely ending in a fatal divergence.

It is therefore almost always necessary to perform certain correction proce-
dures to assure that the convection zone is not disturbed by non-convective re-
gions, and that the temperature and other state parameters are smooth enough
functions of depth before one enters the next iteration of the overall lineariza-
tion scheme. tlusty offers several such schemes:

• Definition of the convection zone.
After a completed iteration, the code examines the depth point in which the
actual gradient surpasses the adiabatic one. If such a point is solitary, or if it
occurs at much smaller column densities than the upper edge of the previous
convection zone, the point is declared as convectively stable, and the traditional
radiative equilibrium equation is solved for it in the next iteration step. On
the other hand, if there is/are depth points in which ∇ < ∇ad (so that they
are seemingly convectively stable), surrounded on both sides by points that
are convectively unstable ∇ ≥ ∇ad, these points are declared as convectively
unstable, and are considered to be part of the convection zone. Within such a
newly defined convection zone, one or both of the following correction procedures
are performed:

• Standard correction procedure.
The idea of the correction is as follows. In view of Eq. (20), the convective flux
is given by

Fconv = F0(∇−∇el)
3/2, (338)

where
F0 = (gQHP /32)1/2(ρcPT )(`/HP )2, (339)

After a completed iteration of the global linearization scheme, one takes the
current values of the state parameters and the radiation flux, and computes,
in the convection zone, the new convective flux corresponding to this radiation
flux so that the total flux is perfectly conserved,

F ∗conv = Ftot − Frad, (340)

where Ftot = σT 4
eff . If Frad is spuriously larger than Ftot, then Frad is set to

0.999Ftot. The new difference of temperature gradients corresponding to this
convective flux is then

∇−∇el = (F ∗conv/F0)2/3, (341)

which is related to ∇−∇ad through

∇−∇ad = (∇−∇el) +B
√
∇−∇el. (342)

where B is given by Eq. (22). Both B and ∇ad are computed through the
current values of the state parameters. Equation (342) thus yields the new
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gradient ∇ and, keeping pressure fixed, the new temperature. With the new
temperature, one recalculates the thermodynamic variables, and iterates the
process defined by Eqs. (339) - (342) to convergence.

In solving Eq. (342), one proceeds from the top of the convection zone to
the bottom, because the gradient ∇ is given by Eq. (336) or (337), so in order
to evaluate Td one needs to know Td−1 in the previous depth point.

This procedure works well if the convective flux is dominant, because it
should be kept in mind that the radiation flux is also imperfect. Therefore, the
temperature is corrected only at depths where the convective flux is larger than
some limiting value, Fconv > γFtot, where γ is by default taken as γ = 0.7, or is
set by input data – see Paper III, § 7.8.

• Refined correction procedure
The above procedure is improved by recognizing that the coefficient B is an
explicit function of temperature, so B can be expressed as B ≡ βT 3. More
importantly, the radiation flux is not kept fixed, but is written as

Frad ≡ αT 4∇, (343)

so that instead of keeping Frad fixed, one first computes α from (343) for the
current values of T and ∇, and rewrites the combined equations (340) –(342)
as a non-linear equation for the temperature,

∇(T ) = ∇ad +

(
Ftot − αT 4∇(T )

F0

)2/3

+ βT 3

(
Ftot − αT 4∇(T )

F0

)1/3

, (344)

which is solved by the Newton-Raphson method, again going from the top of
the convection zone to the bottom. This procedure, if chosen to be performed,
is done after first completing the standard procedure described above, and only
after a certain number of global linearization iterations (driven by input data –
see Paper III, § 7.8 and § 12.6).

Other, more sophisticated refinement procedures are in principle possible,
but they were not yet implemented in tlusty.

B3. Evaluation of the thermodynamic quantities

The internal energy per unit volume is given by

E =
3

2
NkT + 3Prad +

∑
I

NI

[
EI +

(
d lnUI
d lnT

)
kT

]
, (345)

where NI , UI , and EI are the total population, partition function, and the
ground state energy (measured from the ground state of the neutral atom) of
an ion I, respectively. The latter is thus given by the sum of ionization energies
of all the lower ions.

Here, and in the following expressions, it is assumed that the relation be-
tween the radiation energy and pressure is given by the equilibrium relation,
Erad = 3Prad, and Prad = (aR/3)T 4, where aR is the radiation constant. This
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approximation is made only for the purposes of describing convection. The ra-
tionale for this approach is that in the situations when convection is important
(typically for cool models), the radiation pressure is usually a small part of the
total pressure.

The adiabatic gradient is given by

∇ad =

(
∂ lnT

∂ lnP

)
S

= − P

ρcPT

(
∂ ln ρ

∂ lnT

)
P

, (346)

where the specific heat is

cP =

(
∂E

∂T

)
P

− P

ρ2

(
∂ρ

∂T

)
P

=

(
∂E

∂T

)
Pgas

−
(

∂E

∂Pgas

)
T

(
∂P

∂T

)
Pgas

− P

ρ2

[(
∂ρ

∂T

)
Pgas

−
(

∂ρ

∂Pgas

)
T

(
∂P

∂T

)
Pgas

]
, (347)

and (
∂ ln ρ

∂ lnT

)
P

=
T

ρ

[(
∂ρ

∂T

)
Pgas

−
(

∂ρ

∂Pgas

)
T

(
∂P

∂T

)
Pgas

]
. (348)

In view of the above approximations, (∂P/∂T )Pgas
= 1, and so all the quan-

tities are expressed in terms of four thermodynamic derivatives, (∂E/∂T )Pgas
,

(∂E/∂Pgas)T , (∂ρ/∂T )Pgas , (∂ρ/∂Pgas)T . These derivatives are calculated as
differences, e.g., (∂E/∂T )Pgas = [E(T + ∆T, Pgas) − E(T, Pgas)]/∆T , where
∆T = 0.001T .

The thermodynamic quantities may also be formulated through the entropy;
which is set by the keyword IFENTR. In this case

∇ad = −
(
∂S

∂T

)
Pgas

/(
∂S

∂Pgas

)
T

Pgas

T
, (349)

and

cP = − P

ρT

(
∂ ln ρ

∂ lnT

)
P

/
∇ad (350)

B4. Recalculation of vertical distance and density for ac-
cretion disks

For computing the vertical structure of accretion disks, in which case the grav-
ity acceleration depends on the vertical distance from the central plane, it is
important to recalculate the vertical distance and density to be as consistent
with the rest of the structural parameters as possible. tlusty uses one of the
two following procedures:
• Original procedure.
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In order to update z, one can use the z-m relation (12), written in a discretized
form

zd = zd+1 + (md+1 −md)(1/ρd + 1/ρd+1)/2, zND = 0. (351)

However, using this equation is not convenient in the case where z determined
by the current linearization step exhibits an oscillatory or other unphysical
behavior. The reason is that Eq. (351) was used in the linearization, so that
any such behavior of z was likely shared by a similar behavior of ρ, and thus
solving Eq. (351) again does not necessarily help.

A better possibility is to employ a discretized hydrostatic equilibrium equa-
tion, used as an equation for z, namely

Q(zd + zd+1)/2 = (Pd+1 − Pd)/(md+1 −md), (352)

or

zd =
2

Q

Pd+1 − Pd
md+1 −md

− zd+1; zND = 0, (353)

which follows from equation (53). This equation can also be discretized as

zd =
1

2Q

(
Pd+1 − Pd
md+1 −md

+
Pd − Pd−1

md −md−1

)
. (354)

Here, P = P rad + P gas is the total pressure; we do not consider an ill-defined
turbulent pressure.

An iterative scheme to update the vertical distance and the density proceeds
as follows:

(i) Compute the gradient of the radiation pressure as

P rad
d − P rad

d−1

md −md−1
=

4π

c

1

md −md−1

NF∑
i=1

wi(fdiJdi − fd−1,iJd−1,i), (355)

which is then being held fixed in the subsequent iteration scheme.

(ii) Compute the gas pressure for the current density and electron density as

P gas
d = kTdNd = kTd[ρd/(µmH) + ne,d], (356)

(iii) Compute a new vertical distance z using Eq. (354). If this procedure yields
an unphysical values of z such as zd < zd+1 at certain depth d, one switches to
an evaluation of the new x = z using Eq. (353).

(iv) Having determined a new z-scale, recalculate the mass density for d < ND
by using Eq. (351), namely

ρd =
∆md+1/2ρd+1

(zd − zd+1)ρd+1 −∆md+1/2
, (357)

where ∆md+1/2 = (md+1 −md)/2. Before applying Eq. (357), one computes
the ratio ξd = ne,d/ρd. After computing new ρd for all d < ND from Eq. (357),
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one computes new electron density as ne,d = ξdρd, which is based on a reason-
able assumption that the ionization structure is not changed significantly by
updating the density.

(v) Steps (ii) - (iv) are repeated until a relative change in z is sufficiently small.

• Modified procedure.
A better overall procedure is to solve simultaneously six governing equations for
the six unknowns that form a vector ψd, viz.

ψd ≡ {Pd, P gas
d , ρd, Nd, ne,d, zd}, (358)

where, at depth point d, Pd is the total pressure, Nd is the total particle number
density. and the other symbols have their usual meaning. The six governing
equations are

(Pd − Pd−1)/∆md−1/2 −Q(zd + zd−1) = 0, (359)

Pd − P gas
d − P rad

d = 0, (360)

ρd − (µ/mH)(Nd − ne,d) = 0, (361)

P gas
d −NdkTd = 0, (362)

ne,d − ζdNd = 0, (363)

zd − zd+1 −∆md+1/2 (1/ρd + 1/ρd+1) = 0. (364)

The first equation apply for d > 1. For d = 1 it is replaced by (for details refer
to Appendix D.2),

ρ1Hgf(x1)−m1 = 0, (365)

and the last equation for d = ND is replaced by

zND = 0. (366)

The non-linear set of equations (359) - (366) is solved by linearization for the
six components of vector ψ. The resulting set of linearized equations can be
written as

−Adδψd−1 +Bdδψd − Cdδψd+1 = Ld, (367)

where Ad, Bd, and Cd are 6 × 6 matrices. The system (367) is solved by a
standard Gauss-Jordan forward-backward elimination scheme described by Eqs.
(123) - (125). The temperature Td and the radiation pressure P rad

d are held fixed.
The ratio ζd = ne,d/Nd is recomputed after each internal iteration step and is
held constant during the next one.

From the physical point of view, the above procedure is equivalent to the
original one, as it solves the hydrostatic equilibrium equation together with
the z − m relation (the rest of the six governing equations are essentially the
definitions of the individual quantities), but the iteration scheme to obtain the
solution is more efficient in the presert procedure.
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Appendix C. Linearization of the structural equa-
tions

Notation

The order of the individual quantities in the state vector ψ, and the order of
equations within the global operator P are arbitrary. Here we chose, in keep-
ing with the original approach introduced in Auer & Mihalas (1969), the state
vector in the form (118), and the corresponding order of equations: NF trans-
fer equations for explicit (linearized) frequency points, hydrostatic equilibrium
equation, radiative equilibrium equation, charge conservation equation, and NL
kinetic equilibrium equations supplemented by the corresponding particle con-
servation (abundance definition) equations. To simplify the notation, the index
corresponding to hydrostatic equilibrium (or total particle density N) is de-
noted NH; the index corresponding to radiative equilibrium (or temperature T )
as NR, and that corresponding to charge conservation (and the electron density
ne) as NP . In the present convention

NH = NF + 1, NR = NF + 2, NP = NF + 3. (368)

in the case of accretion disks, there is another state parameter and correspond-
ing equation, namely the geometrical distance from the midplane, z. The cor-
responding index is denoted NZ, and its usual value is NZ = NF + 4.

However, tlusty can accept any reasonable values for these parameters, not
just those specified by Eq. (368).

C1. Stellar atmospheres

Linearized transfer equation

The discretized transfer equation was already considered in Appendix A, and is
described by Eqs. (215) - (220). Let i, i = 1, . . . , NF , be a row corresponding to
the transfer equation, and let Pi(ψ) = 0 be a formal expression of the transfer
equation. Then the individual matrix element ij represents the partial deriva-
tive of the i-th transfer equation with respect to the j-th mean intensity,

• For the upper boundary condition, d = 1, and j = 1, . . . , NF

(B1)ij ≡ ∂P1,i

∂J1,j
=

[
f1,i

∆τ3/2,i
+ gi +

τ3/2,i

2
ε1,i

]
δij , (369)

(C1)ij ≡ −∂P1,i

∂J2,j
=

f2,i

∆τ3/2,i
δij . (370)

The other columns corresponding to the components ψd,k, for k > NF , i.e.
corresponding to the temperatures and the number densities (total, electron,
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and level populations)

(B1)ik ≡ ∂P1,i

∂ψ1,k
=

[
−f1,iJ1,i − f2,iJ2,i

∆τ2
3/2,i

+
1

2

(
ε1,iJ1,i −

η1,i

χ1,i

)]
∂∆τ3/2,i

∂ψ1,k

+
∆τ3/2,i

2

[
∂ε1,i
∂ψ1,k

J1,i −
η1,i

χ1,i

(
1

η1,i

∂η1,i

∂ψ1,k
− 1

χ1,i

∂χ1,i

∂ψ1,k

)]
, (371)

(C1)ik ≡ − ∂P1,i

∂ψ2,k
=

(
f1,iJ1,i − f2,iJ2,i

∆τ2
3/2,i

)
∂∆τ3/2,i

∂ψ2,k
, (372)

where, generally,
∂∆τd−1/2,i

∂ψd,k
=

∆τd−1/2,i

ωd + ωd−1

∂ωd−1,i

∂ψd−1,k
, (373)

and ωdi = χdi/ρd. The components of the right-hand side vector L1 are given
by

L1i ≡ −P1,i = −f1,iJ1,i − f2,iJ2,i

∆τ3/2,i
− giJ1,i +Hext

i −
∆τ3/2,i

2

(
ε1,iJ1,i −

η1,i

χ1,i

)
.

(374)
• For the inner points, d = 2, . . . , ND − 1, one has for j = 1, . . . , NF ,

(Ad)ij =
fd−1,i

∆τd−1/2,i∆τd,i
δij , (375)

(Bd)ij =

[
fd,i

∆τd,i

(
1

∆τd−1/2,i
+

1

∆τd+1/2,i

)
+ εd,i

]
δij , (376)

(Cd)ij =
fd+1,i

∆τd+1/2,i∆τd,i
δij , (377)

and for k > NF ,

(Ad)ik = adi
∂ωd−i,i
∂ψd−1,k

, (378)

(Cd)ik = cdi
∂ωd+1,i

∂ψd+1,k
, (379)

(Bd)ik = −(adi + cdi)
∂ωd,i
∂ψd,k

+
∂ε1,i
∂ψ1,k

Jdi

− ηd,i
χd,i

(
1

ηd,i

∂ηd,i
∂ψd,k

− 1

χd,i

∂χd,i
∂ψd,k

)
, (380)

where

αdi =
fdiJdi − fd−1,iJd−1,i

∆τd−1/2,i∆τdi
, (381)

γdi =
fdiJdi − fd+1,iJd+1,i

∆τd+1/2,i∆τdi
, (382)
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βdi = αdi + γdi, (383)

adi =
[
αdi + (1/2)βdi(∆τd−1/2,i/∆τdi)

]/(
ωd−1,i + ωdi

)
, (384)

cdi =
[
γdi + (1/2)βdi(∆τd+1/2,i/∆τdi)

]/(
ωd+1,i + ωdi

)
, (385)

and the right–hand–side vector

Ldi = −βdi − εdiJdi + ηdi/χdi. (386)

• For the lower boundary condition, d = ND, we have, for j ≤ NF, k > NF ,

(Bd)ij =

[
fdi

∆τd−1/2,i
+

1

2
+
τd−1/2,i

2
εdi

]
δij , (387)

(Ad)ij =
fd−1,i

∆τd−1/2,i
δij , (388)

(Bd)ik =

[
−fdiJdi − fd−1,iJd−1,i

∆τ2
d−1/2,i

+ bi +
1

2

(
εdiJdi −

ηdi
χdi

)]
∂∆τd−1/2,i

∂ψd,k

+
∆τd−1/2,i

2

[
∂εdi
∂ψd,k

Jdi −
ηdi
χdi

(
1

ηdi

∂ηdi
∂ψd,k

− 1

χdi

∂χdi
∂ψd,k

)]
−

(
1

2
+

1

3∆τd−1/2,i

)(
dBi
dT

)
d

δk,NR, (389)

(Ad)ik =

(
fdiJdi − fd−1,iJd−1,i

∆τ2
d−1/2,i

− bi

)
∂∆τd−1/2,i

∂ψd−1,k

− 1

3∆τd−1/2,i

(
dBi
dT

)
d−1

δk,NR, (390)

where

bi ≡
1

3

Bdi −Bd−1,i

∆τ2
d−1/2,i

. (391)

The last terms in Eqs.(389) and (390), which only apply for ψk = T , i.e.,
k = NR, arise from the derivatives of the Planck function with respect to
temperature. Finally

Ld,i = −fdiJdi − fd−1,iJd−1,i

∆τd−1/2,i
− 1

2
(Jdi −Bdi) +

1

3

Bdi −Bd−1,i

∆τd−1/2,i

−
∆τd−1/2,i

2

(
εdiJdi −

ηdi
χdi

)
. (392)

Linearized hydrostatic equilibrium equation

The discretized form of Eq. (15) reads

NdkTd−Nd−1kTd−1 +
4π

c

NF∑
i=1

wi(fdiJdi−fd−1,iJd−1,i) = g(md−md−1). (393)
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The upper boundary condition is derived from Eq. (15) assuming that the
radiation force remains constant from the boundary surface upward:

N1kT1 = m1

[
g − (4π/c)

NF∑
i=1

wi(χ1i/ρ1)giJ1i

]
. (394)

For accretion disks, Eqs. (393) and (394) remain unchanged, the only difference
is in the expression for the gravity acceleration g as

g ≡ g(z) = Q(zd + zd−1)/2. (395)

The upper boundary condition is given by Eqs. (189) and (190).
The components of matrices A, B, and vector L corresponding to the hy-

drostatic equilibrium equation, the row NH = NF + 1, follow from linearizing
Eqs. (393) and (394), are given by

(B1)NH,i = (4π/c)wiω1,igi, i ≤ NF, (396)

(B1)NH,NH = kT1, (397)

(B1)NH,NR = kN1 +
4π

c

NF∑
j=1

wjgjJ1,j
∂ω1,j

∂T1
, (398)

(B1)NH,n =
4π

c

NF∑
j=1

wjgjJ1,j
∂ω1,j

∂ψ1,n
, n>NR, (399)

(L1)NH = gm1 −N1kT1 −
4π

c

NF∑
j=1

wjω1jgiJ1i, (400)

and, for d > 1,

(Ad)NH,i = (4π/c)wifd−1,i, i ≤ NF, (401)

(Bd)NH,i = (4π/c)wifdi, , i ≤ NF, (402)

(Ad)NH,NH = kTd−1, (403)

(Bd)NH,NH = kTd, (404)

(Ad)NH,NR = kNd−1, (405)

(Bd)NH,NR = kNd, (406)

(Ld)NH = g(md −md−1)−NdkTd +Nd−1kTd−1

− 4π

c

NF∑
j=1

wj(fdiJdi − fd−1,iJd−1,i). (407)

Linearized radiative equilibrium equation

By discretizing the radiative equilibrium equation (16) one obtains

αd

NF∑
i=1

wi(κdiJdi− ηdi) +βd

[
NF∑
i=1

wi
fdiJdi − fd−1,iJd−1,i

∆τd−1/2,i
− σR

4π
T 4

eff

]
= 0. (408)
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For accretion disks, Eq. (408) is modified as expressed in Eq. (59),

αd

[
NF∑
i=1

wi(κdiJdi − ηdi) + Ediss,d

]

+βd

[
NF∑
i=1

wi
fdiJdi − fd−1,iJd−1,i

∆τd−1/2,i
− σR

4π
T 4

eff(1− θd)

]
= 0, (409)

where Ediss and θ are given by Eqs. (60) and (58), respectively.
Linearization of Eq. (408), for d > 1 and k ≥ NR, yields

(Ad)NR,i = βd wi
fd−1,i

∆τd−1/2,j
, i ≤ NF, (410)

(Ad)NR,k = βd

NF∑
j=1

wj
fdjJdj − fd−1,jJd−1,j

∆τ2
d−1/2,j

∂∆τd−1/2,j

∂ψd−1,k
, (411)

(Bd)NR,i = αdwiκdi + βdwi
fdi

∆τd−1/2,j
, i ≤ NF, (412)

(Bd)NR,k = αd

NF∑
j=1

wj

(
∂κdj
∂ψdk

Jdj −
∂ηdj
∂ψdk

)

− βd

NF∑
j=1

wj
fdjJdj − fd−1,jJd−1,j

∆τ2
d−1/2,j

∂∆τd−1/2,j

∂ψd,k
, (413)

and

(Ld)NR = −αd
NF∑
j=1

wj(κdjJdj − ηdj)

+ βd

σR
4π

T 4
eff −

NF∑
j=1

wj
fdjJdj − fd−1,jJd−1,j

∆τd−1/2,j

 . (414)

The upper boundary condition for d = 1 is

(Bd)NR,i = αdwiκdi + βdwigi, i ≤ NF, (415)

(Ld)NR = −αd
NF∑
j=1

wj(κdjJdj − ηdj)

+ βd

σR
4π

T 4
eff −

NF∑
j=1

wjwj(gjJ1j −Hext
j )

 . (416)

Linearized charge conservation equations

The equation is local and simple, so the linearization is straightforward

(Bd)NP,NP = −1, (417)
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(Bd)NP,i = Zi, i > NP, (418)

where Zi is the charge of the ion to which level i belongs, and

(Ld)NP = ne −
NL∑
i=1

niZi. (419)

All other elements of the NP -th row of matrix B, and all elements of the NP -th
row of matrices A and C are zero.

Linearized kinetic equilibrium equations

The radiative rates are written as quadrature sums,

Rlu =
4π

h

NF∑
i=1

1

νi
wiσlu(νi)Jdi, (420)

Rlu =
4π

h

NF∑
i=1

1

νi
wiσlu(νi)

(
2hν3

i

c2
+ Jdi

)
. (421)

where the summations formally extend over all frequency points. It should be
kept in mind that the appropriate cross-section differ from zero only in limited
ranges of frequencies.

The kinetic equilibrium equations (61) are local, therefore Aij = Cij = 0 for
i > NP and all j. Because the form of matrix elements is the same for all depth
points, we drop the depth index d. The matrix elements are as follows

Bm,i =

NL∑
j=1

∂Amj
∂Ji

nj , i ≤ NF, (422)

Bm,NR =

NL∑
j=1

∂Amj
∂T

nj , (423)

Bm,NP =

NL∑
j=1

∂Amj
∂ne

nj , (424)

Bmj = Amj , j > NP, (425)

Lm = bm −
NL∑
j=1

Amjnj . (426)

For each atomic species I, the rate equation for a characteristic level, say k, is
replaced by the particle conservation equation, (74). The corresponding matrix
elements are

Bki = 1, (427)

Bk,NH = −αI , (428)

Bk,NP = αI , (429)
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where i labels all levels considered for species I, and αI = AI/
∑
J AJ is the

fractional abundance of species I.

Linearized equation for convection

When convection is taken into account, it is advantageous to consider the loga-
rithmic gradient of temperature ∇ as one of the state parameters, and include
it in the state vector ψ,

ψd = {Jd1, . . . , Jd,NF , N, T, ne,d, nd1, . . . , nd,NL,∇d}, (430)

where we adopt the convention that the gradient ∇d is the one corresponding
to depth d− 1/2, i.e.,

∇d−1/2 = (lnTd − lnTd−1)/(lnPd − lnPd−1). (431)

The gradient may also be evaluated as

∇d−1/2 =
Td − Td−1

Td + Td−1
· Pd + Pd−1

Pd − Pd−1
. (432)

In the following, we use equation (432) to represent the logarithmic temperature
gradient. The corresponding adiabatic gradient also has to be evaluated at the
mid-point d− 1

2 , ∇ad = ∇ad(Td−1/2, Pd−1/2), with Td−1/2 = (Td +Td−1)/2, and
a similar equation for Pd−1/2. The mid-point values may also be evaluated as

geometric means, i.e. Td−1/2 = (TdTd−1)1/2, but in the following we use the
arithmetic mean. The convective flux is a quantity that also corresponds to the
grid mid-points, hence it should be written as Fconv = Fconv,d−1/2.

At the depth points where the Schwarzschild criterion is satisfied, the radia-
tive equilibrium equation has to be modified to radiative+convective equilibrium
equation which reads

αd

[∑
i

wi(κiJi − ηi) +
ρd
4π

F conv
d+1/2(ψd, ψd+1)− F conv

d−1/2(ψd, ψd−1)

∆md

]

+βd

[
NF∑
i=1

wi
fdiJdi − fd−1,iJd−1,i

∆τd−1/2,i
− σR

4π
T 4

eff +
F conv
d−1/2(ψd, ψd−1)

4π

]
= 0, (433)

where ∆md = (md+1−md−1/2)/2. Here we show explicitly a dependence of the
convective flux of the state parameters, because for instance F conv

d−1/2 is evaluated

at the midpoint, that is, for temperature T = (Td + Td−1)/2, and analogously
for other quantities. For accretion disks, Eq. (433) is modified analogously to
Eq. (409).

There are four modifications of matrices A, B, C, and vector L when con-
vection is taken into account:
– a modification of the row NR = NF + 2, corresponding to radiative equilib-
rium, now being modified to radiative + convective equilibrium;
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– an addition of a column in all matrices corresponding to ∇; using the conven-
tion of equation (430), it is the column NN = NF +NL+ 4;
– an addition of a row NN , corresponding to ∇;
– a modification of vector L, namely changing the NR element, and adding the
NN element.
• Because the convective flux depends only on T , P , and ∇, and writing

P = NkT , the only new elements of the row NR of matrices A, B, C are those
corresponding to N , T , and ∇. In the radiative zone, ∇ < ∇ad, all new elements
are zero. In the convection zone, ∇ ≥ ∇ad, there are the following additions to
the matrix elements, denoted by superscript “conv”, that follow from linearizing
equation (433), where we introduce Hconv ≡ F conv/4π,

Aconv
NR,NH = αd

(
∂Hconv

∂P

)
d−1/2

ρd
2∆md

kTd−1

+
βd
2

(
∂Hconv

∂P

)
d−1/2

kTd−1, (434)

Aconv
NR,NR = αd

[(
∂Hconv

∂T

)
d−1/2

+

(
∂Hconv

∂P

)
d−1/2

kNd−1

]
ρd

2∆md

+ βd

[
1

2

(
∂Hconv

∂T

)
d−1/2

+
1

2

(
∂Hconv

∂P

)
d−1/2

kNd−1

]
, (435)

Aconv
NR,NN = αd

Hconv
d−1/2

(∇d −∇el,d−1/2)

3ρd
4∆md

, (436)

Bconv
NR,NH = αd

[(
∂Hconv

∂P

)
d+1/2

−
(
∂Hconv

∂P

)
d−1/2

]
ρd

2∆md
kTd

+
ρd

(Nd − ne,d)

Hconv
d+1/2 −H

conv
d−1/2

∆md

+
βd
2

(
∂Hconv

∂P

)
d−1/2

kTd, (437)

Bconv
NR,NR = αd

[(
∂Hconv

∂T

)
d+1/2

+

(
∂Hconv

∂P

)
d+1/2

kNd

−
(
∂Hconv

∂T

)
d−1/2

−
(
∂Hconv

∂P

)
d−1/2

kNd

]
ρd

2∆md

+ βd

[
1

2

(
∂Hconv

∂T

)
d−1/2

+
1

2

(
∂Hconv

∂P

)
d−1/2

kNd

]
, (438)

Bconv
NR,NP = −αd

ρd
(Nd − ne,d)

Hconv
d+1/2 −H

conv
d−1/2

∆md
, (439)

Bconv
NR,NN = αd

[
Hconv
d+1/2

∇d+1 −∇el,d+1/2
−

Hconv
d−1/2

∇d −∇el,d−1/2

]
3ρd

4∆md
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+ βd
3

2

Hconv
d−1/2

∇d −∇el,d−1/2
, (440)

Cconv
NR,NH = −αd

(
∂Hconv

∂P

)
d+1/2

ρd
2∆md

kTd+1, (441)

Cconv
NR,NR = −αd

[(
∂Hconv

∂T

)
d+1/2

+

(
∂Hconv

∂P

)
d+1/2

kNd−1

]
ρd

2∆md
, (442)

Cconv
NR,NN = −αd

Hconv
d+1/2

(∇d −∇el,d+1/2)

3ρd
4∆md

, (443)

Lconv
NR = −αd

ρd
∆md

(Hconv
d+1/2 −H

conv
d−1/2)− βdHconv

d−1/2, (444)

where we used ∂Td−1/2/∂Td = 1/2. The partial derivatives of the convective
flux with respect to temperature and pressure are obtained numerically,

∂Hconv

∂T
=
Hconv(T + δT, P,∇)−Hconv(T, P,∇)

δT
, (445)

and analogously for the derivative with respect to pressure. Here, δT is an
arbitrary small quantity; it is typically chosen δT = 0.01T . The derivative with
respect to ∇ is computed analytically.
• The additional row corresponding to ∇, that is a linearized equation (432),

is simple

Aconv
NN,NH = − 2Pd∇d

P 2
d − P 2

d−1

kTd−1, (446)

Aconv
NN,NR =

2Td∇d
T 2
d − T 2

d−1

− 2Pd∇d
P 2
d − P 2

d−1

kNd−1, (447)

Bconv
NN,NH = − 2Pd−1∇d

P 2
d − P 2

d−1

kTd, (448)

Bconv
NN,NR =

2Td−1∇d
T 2
d − T 2

d−1

− 2Pd−1∇d
P 2
d − P 2

d−1

kNd, (449)

Bconv
NN,NN = −1, (450)

and

LNN = ∇d −
Td − Td−1

Td + Td−1
· Pd + Pd−1

Pd − Pd−1
. (451)

C2. Accretion disks

Radiative transfer equation

It is the same as for stellar atmospheres; the only difference is in the lower
boundary condition, d = ND. Its discretized form follows from integrating Eq.
(220) over angles. The corresponding matrix elements are given by the same
expressions as in Eqs. (387) - (390); the only difference is that in Eqs. (389)
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and (390) the specific terms for k = NR are not present; formally it is expressed
as the term δk,NR = 0 for all values of k. The elements of the right-hand side
vector are given by

Ld,i = −fdiJdi − fd−1,iJd−1,i

∆τd−1/2,i
−

∆τd−1/2,i

2

(
εdiJdi −

ηdi
χdi

)
. (452)

Vertical hydrostatic equilibrium equation

All matrix elements ANH,i and BNH,i and vector LNH remain unchanged, the
only difference is the addition of elements corresponding to vertical distance z,

(Ad)NH,NZ = Q(md −md−1)/2, (453)

(Bd)NH,NZ = −Q(md −md−1)/2 (454)

The upper boundary condition can either be considered to be the same as
in the case of stellar atmospheres, or is taken in a different form, based on the
formalism put forward in § 4.2, specifically Eqs. (189) and (190). However, the
scale heights Hg and Hr are not approximated, but instead are treated using
actual values of the state parameters, and are thus linearized. Specifically,

Hg =

(
2N1kT1

ρ1Q

)1/2

, (455)

Hr =
4π

cQρ1

NF∑
i+1

wiχi
(
giJi −Hext

i

)
(456)

The right-hand side is given by

(L1)NH = m1 −Hgρ1f(x1), (457)

where

x1 =
z1 −Hr

Hg
, and f(x) =

√
π

2
exp(x2)erfc(x). (458)

and the matrix elements are

(B1)NH,i = − 4π

cQ
f ′1wigiχ1i, i = 1, . . . , NF, (459)

(B1)NH,NH =
1

N1
(ρ1Hgf1 +Hrρ1f

′
1), (460)

(B1)NH,NR =
1

2T1
[ρ1Hgf1 + ρ1f

′
1(Hr − z1)]

− 4π

cQ
f ′1

NF∑
i=1

wi
∂χ1i

∂T1

(
giJi −Hext

i

)
, (461)

(B1)NH,k = − 4π

cQ
f ′1

NF∑
i=1

wi
∂χ1i

∂ψ1k

(
giJi −Hext

i

)
, (462)

(B1)NH,NZ = ρ1f
′
1, (463)
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where k > NR and k 6= NZ, and

f1 = f(x1), f ′1 =
df

dx

∣∣∣∣
1

, (464)

and f ′ is evaluated as f ′(x) = [f(x+ ∆x)− f(x)]/∆x with ∆x = 0.01x.

Energy balance equation

As follows from Eq. (409), the matrix elements are very similar to those for
the stellar atmosphere case, the only difference is the replacement σRT

4
eff by

σRT
4
eff(1− θd), which enters only the right-hand side vector (namely, its differ-

ential equation part). There are several additional terms in the integral equation
part which we summarize below,

(Ad)
add
NR,NH = αdE0wd µmH , (465)

(Bd)
add
NR,NH = −αdE0wd µmH , (466)

(Ld)
add
NR = −αdE0wd ρd, (467)

where

E0 = Ediss/ρw =
9

16π

GM

R3

(
A

B

)2

, (468)

as follows from Eq. (60).

Equation for vertical distance

Matrix elements for d < ND are

(Bd)NZ,NH = µmH(md+1 −md)/2ρ
2
d, (469)

(Cd)NZ,NH = −µmH(md+1 −md)/2ρ
2
d+1, (470)

(Bd)NZ,NP = −µmH(md+1 −md)/2ρ
2
d, (471)

(Cd)NZ,NP = µmH(md+1 −md)/2ρ
2
d+1, (472)

(Bd)NZ,NZ = (Cd)NZ,NZ = 1, (473)

(Ld)NZ = zd+1 − zd +
md+1 −md

2

(
1

ρd
+

1

ρd+1

)
, (474)

and for d = ND they are simply

(Bd)NZ,NZ = 1, (Ld)NZ = 0. (475)

C3. Compton scattering

Within the present setup, Compton scattering can only be treated using the tra-
ditional full complete linearization approach, because using the hybrid CL/ALI
scheme is very unstable, and the Rybicki scheme cannot be easily generalized
to this case while preserving its favorable numerical properties.
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Here we summarize the additional terms in matrices A, B, C, and in the
right-hand side vector L, described above in Appendix C.1. We denote these
additional terms with superscript “compt”.
• Matrix elements corresponding to the transfer equation: For the highest

frequency, which in the linearization has index i = 1,

(Bd)
compt
ii = Bi, (476)

(Bd)
compt
i,i+1 = Ci, (477)

(Ld)
compt
i = −BiJi − CiJi+1. (478)

For other frequencies, one has

(Bd)
compt
i,i−1 = Ai, (479)

(Bd)
compt
ij = Bi, (480)

(Bd)
compt
i,i+1 = Ci, (481)

(Bd)
compt
i,NR = [(−3c−i + d−i )Ji−1 + (−3c0i + d0

i )Ji

+ (−3c+i + d+
i )Ji+1](neσe/χi)(Θ/T ) (482)

(Bd)
compt
i,NP = Scompt/ne, (483)

(Ld)
compt
i = −Scompt. (484)

with
Scompt = AiJi−1 + BiJi + CiJi+1, (485)

• Matrix elements corresponding to the radiative equilibrium equation:

(Bd)
compt
NR,i = −αdχdiwi(Ai+1 + Bi + Ci−1) (486)

(Bd)
compt
NR,NR = −αdχdiwi[(−3c−i + d−i )Ji−1 + (−3c0i + d0

i )Ji

+ (−3c+i + d+
i )Ji+1](neσe/χi)(Θ/T ) (487)

(Bd)
compt
NR,NP = −αdχdiwiScompt/ne, (488)

(Ld)
compt
NR = αdχdiwiScompt. (489)

It turns out that in some cases the overall linearization scheme is more stable if
one does not linearize the Compton terms in the radiative equilibrium, so the
above additional matrix elements (Bd)NR,k, k = 1, . . . , NP , are set to zero if
needed.

Appendix D. Details of the implementation of the
hybrid CL/ALI method

As shown in § 3.2, the method does not linearize the mean intensity of radia-
tion in all frequency points, but only in selected few frequencies, call “explicit”
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frequencies. For the remaining frequency points, called “ALI frequencies”, the
mean intensity is expressed as

Jdj = Λ∗d,j(ηdj/κdj) + ∆Jdj . (490)

The mean intensity in the ALI frequencies are thus removed form the state
vector. The parameter NF now refers to the number of explicit frequencies.

Although tlusty allows for both a diagonal as well as tri-diagonal operator,
here we consider a diagonal Λ∗ for simplicity. In any case, numerical experience
showed that although an application of the tridiagonal operator speeds up the
convergence of the iterations, a similar or even faster convergence is obtained
with a diagonal operator applied together with the Ng acceleration.

In the expressions for the elements of the Jacobian, the mean intensity in
the ALI frequency point i is then viewed as a function of T , ne, and the set
of atomic level populations ni, i = 1, . . . , NL. Denoting x ≡ {T, ne, ni}, the
corresponding derivatives are given by

∂Jdi
∂xd

≡ Dx
dj = Λ∗dj

ηdj
κdj

(
1

ηdj

∂ηdj
∂x
− 1

κdj

∂κdj
∂x

)
, (491)

where the term ∆Jid is known from the previous iteration and is therefore
independent of x, and consequently does not appear in linearized equations.

The elements of matrices A, B, and C are then modified as follows. All the
expressions for the first NF rows are valid, provided that NF now refers to the
number of explicit (linearized) frequency points. Analogously, the expression for
the first NF columns are also unchanged. Other elements will contain additional
terms that correspond to the contribution of the ALI frequencies. We will
summarize the additional terms below.

We use the following notation. As specified above, x may mean any of the
state vector parameters T , ne, and ni, i = 1, NL. The corresponding index is
denoted as NX; i.e. NX = NR for x = T , NX = NP for x = ne, etc. The total
number of the ALI frequency points is denoted by NFA.

For the row corresponding to the hydrostatic equilibrium equation one has
the following additional terms, denoted with superscript “ALI” ,

(B1)ALI
NH,NX = (4π/c)

NFA∑
j=1

wjgj
[
ω1jD

x
1j + (∂ω1j/∂x1)J1j

]
, (492)

(L1)ALI
NH = −(4π/c)

NFA∑
j=1

wjω1jgjJ1j , (493)

for the upper boundary condition, and, for d > 1,

(Ad)
ALI
NH,NX = (4π/c)

NFA∑
j=1

wjfd−1,jD
x
d−1,j (494)
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(Bd)
ALI
NH,NX = (4π/c)

NFA∑
j=1

wjfdjD
x
dj , (495)

(Ld)
ALI
NH = −(4π/c)

NFA∑
j=1

wj(fdjJdj − fd−1,jJd−1,j). (496)

For the row corresponding to the radiative equilibrium, one has the following
additions.

(Ad)
ALI
NR,NX = βd

NFA∑
j=1

wjfd−1,jD
x
d−1,j/∆τd−1/2,j , (497)

(Bd)
ALI
NR,NX = αd

NFA∑
j=1

wj

[
κdjD

x
dj +

∂κdj
∂xd

Jdj −
∂ηdj
∂xd

]

+ βd

NFA∑
j=1

wjfdjD
x
dj/∆τd−1/2,j , (498)

(Ld)
ALI
NR = −αd

NFA∑
j=1

wj(κdjJdj − ηdj)

− βd

NFA∑
j=1

wj
fdjJdj − fd−1,jJd−1,j

∆τd−1/2,j
(499)

The set of kinetic equilibrium equations is written in the form

n−A−1 · b = 0, (500)

from which one obtains
(∂n/∂x) = −A−1 ·Vx. (501)

Vector V represents the column of the Jacobi matrix corresponding to quantity
x; x stands for any quantity of vector ψ, including linearized mean intensities.

Vx = (∂A/∂x) · n− (∂b/∂x). (502)

Let the transition l ↔ u be represented by an arbitrary combination of the
“explicit” and “ALI” frequency points; either subset is allowed to be empty.
Generally, the contribution from this transition comes only to the two following
components of vector Vx, namely

(Vx)l =
∂(Rlu + Clu)

∂x
nl −

∂(Rul + Cul)

∂x
nu,

(Vx)u = −(Vx)l. (503)

The radiative rate is written in a discretized form as

Rlu = (4π/h)

NF∑
i=1

wiσlu(νi)Ji/νi +

NFA∑
j=1

wjσlu(νj)Jj/νj ,

 , (504)
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and similarly for the downward rate. The contribution to Vx from the collisional
rates and from the “explicit” frequency points is the same as in the case of the
standard CL, whereas the ALI contribution is given by

(Vx)ALI
l = [nl − nuGlu(ν)](4π/h)

NFA∑
j=1

wjσlu(νj)D
x
j /νj , (505)

where Dx
j is given by equation (491). The important differences from the stan-

dard complete linearization is that because the derivatives Dx
j are generally

nonzero for x being the individual level populations, the Jacobian contains con-
tributions from the populations. This of course expresses the fact stated already
that within the ALI formalism the kinetic equilibrium equations are nonlinear
in the level populations.

The charge conservation equation, and the additional terms for convection
are independent of the radiation field, and therefore are the same as in the
traditional complete linearization.

Appendix E. Implementation of the Rybicki sche-
me

The overall structure of the global Jacobian is reversed from the original com-
plete linearization, in the sense that the role of frequencies and depths is re-
versed. Although one may use the idea of the hybrid CL/ALI method, in the
sense that only some frequency points are taken as explicit, it is not very prac-
tical because it slows down the convergence rate of the linearization iteration.
Therefore, all the frequency points are taken as explicit. For convenience, we
repeat here the basic equations of both schemes.

For complete linearization

−Adδψd−1 + Bdδψd −Cdδψd+1 = Ld, (506)

where
ψd = {J1, . . . , JNF , N, T, ne, n1, . . . , nNL, [nm], [∇], [z]}. (507)

Here, A, B, and C are NN ×NN matrices, and L is a residual error vector.
For the Rybicki scheme,

UiδJi + RiδT = E, (508)

with
δJi ≡ {δJ1i, δJ2i, . . . , δJND,i}, i = 1, . . . , NF, (509)

and
δT ≡ {δT1, δT2, . . . , δTND}. (510)

Here, the only state parameter besides the mean intensities is the tempera-
ture. Therefore, one has to view all the other state parameters as functions of
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T . Consequently, instead of employing the partial derivatives ∂χ/∂T , ∂χ/∂ne,
∂χ/∂ni, etc., one has to consider a total derivative Dχ/DT , and analogously
for the derivatives of the emission and scattering coefficients,

The components corresponding to the radiative transfer equation are the
following. The tridiagonal matrices U that contain derivatives with respect
to the mean intensities are exactly analogous to the corresponding elements of
matrices A, B, and C of complete linearization,

Udd,i = (Bd)ii, Ud,d−1,i = (Ad)ii, Ud,d+1,i = (Cd)ii. (511)

Components of matrices R are similar, but not identical, to the components of
the original matrices,

Rdd,i = (Bd)i,NR, Rd,d−1,i = (Ad)i,NR, (512)

where we replace the partial derivatives ∂χ/∂T , ∂η/∂T , ∂σ/∂T by the total
derivatives Dχ/DT , Dη/DT , and Dσ/DT , respectively. The right-hand side
vector is given by

Ed,i = (Ld)i. (513)

Similarly, for the radiative equilibrium equation,

Vdd,i = (Bd)NR,i, Vd,d−1,i ≡ (Ad)NR,i, (514)

Wdd,i = (Bd)NR,NR, Wd,d−1,i = (Ad)NR,NR, (515)

Fd = (Ld)NR, (516)

where again in Eq. (515) one replaces ∂κ/∂T and ∂η/∂T by Dκ/DT and
Dη/DT .

The total derivatives are computed numerically as, for instance for χ,

Dχd
DTd

=
χ̃d − χd

∆Td
, (517)

where ∆Td is set to 0.01Td. We denote the new temperature Td + ∆Td as T̃d.
The corresponding χ̃d is computed by the following multi-step procedure:

(i) Update of the gas pressure, denoted here as P̃ , by solving the hydrostatic
equilibrium equation,

P̃1 = m1(g − grad
1 ), (518)

P̃d = P̃d−1 + (md −md−1)
[
g − grad

d (1 + 4∆Td)
]
, d > 1, (519)

where

grad
1 = (4π/cρ1)

NF∑
i=1

wiχ1igiJ1i, (520)

grad
d = (4π/c)

NF∑
i=1

wi
fdiJdi − fd−1,iJd−1,i

md −md−1
, d > 1 (521)
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is the current value of the radiation acceleration. The last term in Eq. (519)
represents an approximate modification of the radiation pressure due to modified
temperature by expressing P rad = γP rad,TE ∝ γT 4, (with the superscript “TE”
denoting the thermodynamic equilibrium), and thus

P rad(T + ∆T ) ≈ P rad(T ) + (dP rad/dT )∆T = P rad(1 + 4∆T ), (522)

which assumes that the non-equilibrium proportionality parameter γ remains
unchanged, and that the radiation pressure varies slowly with depth so that the
same thermodynamic relation can be used also for the radiation acceleration.

(ii) Compute new total particle density for the new gas pressure,

Ñd = P̃d/(kT̃d). (523)

(iii) For the new Ñd, compute the new electron number density ñe by solving a
set of Saha equations and the charge conservation equation.

(iv) Using the new T̃ and ñe, and using current values of the radiative rates and
collisional cross sections, solve the set of kinetic equilibrium equations to obtain
a new set of populations ñi, i = 1, . . . , NL. Notice that in the case of LTE
the kinetic equilibrium equations are replaced by the set of Saha-Boltzmann
expression for the level populations.

(v) Finally, the opacities and emissivities are evaluated by standard expressions

for the new values of T̃ , ñe, and ñi,

χ̃d = χd(T̃ , ñe, {ñi}), (524)

and analogously for η and σ.

Appendix F. Partial frequency redistribution

This process is not a main emphasis of tlusty, but can be included in an
approximate way. In the present version of tlusty, only the H I Lyman α, the
Mg I resonance line at λ2852 Å, and the Mg II resonance lines at λλ2796, 2803
Å can be treated with partial redistribution, namely using the partial coherent
scattering approximation.

Under the usual approximation of complete frequency redistribution (CFR),
there is no correlation between the frequencies of an absorbed and an emitted
photon during the process of resonance scattering in a line, that is a radiative
transition from level i to level j, immediately followed by a radiative transition
from j to i.

A more general approach is called the partial frequency redistribution (PFR,
but often, and in the past, an acronym PRD was used). In this case, there
is a correlation between the absorbed and emitted photons described through
the redistribution function. For a comprehensive discussion refer to Hubeny &
Mihalas (2014; Chaps.10 and 15). The most appropriate redistribution function
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for a resonance line is a linear combination of complete redistribution, and co-
herent scattering on the atom’s frame, which in the observer’s frame is described
through the redistribution function RII. The latter can further be approximated
by another linear combination of complete redistribution and coherent scatter-
ing in the laboratory frame, called partial coherent scattering approximation
[Jefferies & White (1960), Kneer (1975), Hubeny & Mihalas (2014, § 15.3)].

The presence of PFR effects changes in principle both the emission coefficient
in the line, as well as the radiative rates. As discussed for instance in Hubeny
& Mihalas (2014, § 15.1), the latter effects are usually very small, so in tlusty
only a modification of the emission coefficient is taken into account. One makes
another approximation that the effects of partial redistribution are negligible
in the line core, which further simplifies the modifications needed to treat the
PFR effects in tlusty.

For a line chosen to be with PFR, the emission coefficient for the ordinary
complete redistribution is given by, neglecting stimulated emission,

ηCFR
ij (x) = njAjiφij(x), (525)

where x = (ν − ν0)/∆νD is the frequency difference from the liner center ex-
pressed in units of Doppler width, Aji is the Einstein coefficient for spontaneous
emission from level j to i, and φ(x) is the (normalized) absorption profile co-
efficient that expresses the frequency dependence of the line absorption cross
section, typically given by a Voigt profile, or a special profile in the case of
hydrogen.

The approximate treatment of PFR adopted in tlusty consists of two sim-
ple modifications of the standard CFR approach: The modifications for the
approximate approach adopted in tlusty is:

(i) Replacing the emission coefficient with

ηPFR
ij (x) = ηCFR

ij (x)[1− γij s̄(x)], (526)

where s̄(x) is a step function, s̄(x) = 0 for x ≤ xdiv, and s̄(x) = 1 for > xdiv; and
xdiv is the so-called division frequency, which is an input parameter (XPDIV).
γ is the so-called coherence fraction, given approximately by,

γij ≈ Aji/Γij , (527)

where Γij is the line broadening parameter [see Eq. (99)]. The simple form
of Eq. (527) follows from neglecting various other processes, such as inelastic
collisions.

(ii) Adding a coherent scattering term to the original scattering terms, which is
usually just the electron (Thomson) scattering,

σ(ν) = σorig(ν) + κij(ν)γij s̄(x). (528)

The above treatment of partial redistribution is admittedly very crude, but it
should be kept in mind that this approach is designed only to assess possible
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modifications of the global atmospheric structure due to PFR in some lines,
which, in the vast majority of cases, is relatively small. To compute detailed
line profiles with more accurate treatment of PFR, one can always take an atmo-
spheric structure computed by tlusty and use it in another codes specifically
designed to produce line profiles with a more sophisticated treatment of PFR.
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